基于文件的多表join实现参考
用例:有N个文件,每个文件只有一列主键,每个文件代表一种属性。即当如PRI1主键在A文件中,说明PRI1具有A属性。这种场景,一般用于数据的筛选,比如需要既有属性A又有属性B的主键有哪些?就是这类场景。
如何处理该场景?
1.解题思路
如果抛却如题所说文件限制,那我们如何解决?
比如,我们可以将每个文件数据导入到redis中,数据结构为hash, redis-key为pri主键,hash-key为属性X, hash-value为1或不存在。在做判定的时候,只需找到对应的key, 再去判断其是否具有对应属性即可解决问题了。
这个方案看起来比较合适,但有两个缺点:1. redis内存数据库,容量有限,不一定能满足大数据量的场景; 2. 针对反向查询的需求无法满足,即想要查找既含有A属性又含有B属性的主键列表,就很难办到。
再比如,我们可以使用类似于mysql之类的关系型数据,先将单文件数据导致单表中,表名以相应属性标识命名,然后以sql形式进行临时计算即可。sql参考如下:
select COALESCE(ta.id,tb.id) as id,
case when ta.id is not null then 1 else 0 end as ta_flag,
case when tb.id is not null then 1 else 0 end as tb_flag
from table_a as ta
full join table_b as tb on ta.id=tb.id;
应该说这种解决方案算是比较好的了,在计算不大的情况下,这种复杂度在数据库领域简直是小场面了。需要再次说明的是,在数据库会新建一个个的小表,它只有一列主键数据,然后在查询的时候再进行计算。这种方案的问题在于,当标识越来越多之后,就会导致小表会越来越多,甚至可能超出数据库限制。原本是一个一般的需求,却要要求非常好数据库支持,也不太好嘛。
不过,上面这个问题,也可以解决。比如我们可以使用行转列的形式,将以上小表转换成一张大表,随后将小表删除,从而达到数据库的普通要求。合并语句也不复杂。参考如下:
create table w_xx as
select COALESCE(ta.id,tb.id) as id,
case when ta.id is not null then 1 else 0 end as ta_flag,
case when tb.id is not null then 1 else 0 end as tb_flag
from table_a as ta
full join table_b as tb on ta.id=tb.id;
如此,基本完美了。
2. 基于文件的行转列数据join
如果我没有外部存储介质,那当如何?如题,直接基于文件,将多个合并起来。看起来并非难事。
如果不考虑内存问题,则可以将每个文件读入为list, 转换为map存储,和上面的redis实现方案类似。只是可能不太现实,也比较简单,忽略实现。
再简单化,如果我们每个文件中保存的主键都是有序的,要想合并就更简单了。
基本思路是,两两文件合并,依次读取行,然后比对是否有相等的值,然后写到新文件中即可。
另外,如果要做并行计算,可以考虑使用上一篇文章提到的 fork/join 框架,非常合场景呢。
2.1. 文件行转列合并主体框架
主要算法为依次遍历各文件,进行数据判定,然后写目标文件。具体实现如下:
/**
* 功能描述: 文件合并工具类
*
*/
@Slf4j
public class FileJoiner {
/**
* router结果文件分隔符
*/
private static final String CSV_RESULT_FILE_SEPARATOR = ",";
/**
* 合并文件语义,等价sql:
* select coalesce(a.id, b.id, c.id...) id,
* case when a.id is not null then '1' else '' end f_a,
* case when b.id is not null then '1' else '' end f_b,
* ...
* from a
* full join b on a.id = b.id
* full join c on a.id = c.id
* ...
* ;
*/
public JoinFileDescriptor joinById(JoinFileDescriptor a,
JoinFileDescriptor b) throws IOException {
JoinFileDescriptor mergedDesc = new JoinFileDescriptor();
if(a.getLineCnt() <= 0 && b.getLineCnt() <= 0) {
List
fieldDesc = new ArrayList<>(); // 先a后b
fieldDesc.addAll(a.getFieldInfo());
fieldDesc.addAll(b.getFieldInfo());
mergedDesc.setFieldInfo(fieldDesc);
return mergedDesc;
}
if(a.getLineCnt() <= 0) {
List
fieldDesc = new ArrayList<>(); // 先b后a
fieldDesc.addAll(b.getFieldInfo());
fieldDesc.addAll(a.getFieldInfo());
mergedDesc.setFieldInfo(fieldDesc);
return mergedDesc;
}
if(b.getLineCnt() <= 0) {
List
fieldDesc = new ArrayList<>(); // 先a后b
fieldDesc.addAll(a.getFieldInfo());
fieldDesc.addAll(b.getFieldInfo());
mergedDesc.setFieldInfo(fieldDesc);
return mergedDesc;
}
// 正式合并 a b 表
String mergedPath = a.getPath() + ".m" + a.getDeep();
long cnt = -1;
try(BufferedReader aReader = new BufferedReader(new FileReader(a.getPath()))) {
try(BufferedReader bReader = new BufferedReader(new FileReader(b.getPath()))) {
a.setReader(aReader);
b.setReader(bReader);
try(OutputStream outputStream = FileUtils.openOutputStream(new File(mergedPath))) {
cnt = unionTwoBufferStream(a, b, outputStream);
}
}
}
mergedDesc.setPath(mergedPath);
mergedDesc.setLineCnt(cnt);
mergedDesc.incrDeep();
// 先a后b
List
fieldDesc = new ArrayList<>(); a.getFieldInfo().forEach(FileFieldDesc::writeOk);
b.getFieldInfo().forEach(FileFieldDesc::writeOk);
fieldDesc.addAll(a.getFieldInfo());
fieldDesc.addAll(b.getFieldInfo());
mergedDesc.setFieldInfo(fieldDesc);
return mergedDesc;
}
/**
* 合并多文件,无序的,但各字段位置可定位
*
* @param fileList 待合并的文件列表
* @param orderedFieldList 需要按序排列
* @return 合并后文件信息及字段列表
* @throws Exception 合并出错抛出
*/
public JoinFileDescriptor joinMultiFile(List
fileList, List
orderedFieldList) throws Exception { ForkJoinPool forkJoinPool = new ForkJoinPool();
FileJoinFJTask fjTask = new FileJoinFJTask(fileList);
ForkJoinTask
future = forkJoinPool.submit(fjTask); JoinFileDescriptor mergedFile = future.get();
// List
orderedFieldList = new ArrayList<>(); // for (JoinFileDescriptor file1 : fileList) {
// List
field1 = file1.getFieldInfo().stream() // .map(FileFieldDesc::getFieldName)
// .collect(Collectors.toList());
// orderedFieldList.addAll(field1);
// }
return rewriteFileBySelectField(mergedFile, orderedFieldList);
}
/**
* 按照要求字段顺序重写文件内容
*
* @param originFile 当前文件描述
* @param orderedFields 目标字段序列
* @return 处理好的文件实例(元数据或获取)
* @throws IOException 写文件异常抛出
*/
public JoinFileDescriptor rewriteFileBySelectField(JoinFileDescriptor originFile,
List
orderedFields) throws IOException { List
fieldDescList = originFile.getFieldInfo(); if(checkIfCurrentFileInOrder(fieldDescList, orderedFields)) {
log.info("当前文件已按要求排放好,无需再排: {}", orderedFields);
return originFile;
}
Map
indicatorMap = composeFieldOrderIndicator(fieldDescList, orderedFields); AtomicLong lineCounter = new AtomicLong(0);
String targetFilePath = originFile.getPath() + ".of";
try(BufferedReader aReader = new BufferedReader(new FileReader(originFile.getPath()))) {
try(OutputStream outputStream = FileUtils.openOutputStream(new File(targetFilePath))) {
String lineData;
while ((lineData = aReader.readLine()) != null) {
String[] cols = StringUtils.splitPreserveAllTokens(
lineData, CSV_RESULT_FILE_SEPARATOR);
// 空行
if(cols.length == 0) {
continue;
}
// id,1,...
StringBuilder sb = new StringBuilder(cols[0]);
for (String f1 : orderedFields) {
sb.append(CSV_RESULT_FILE_SEPARATOR);
FieldOrderIndicator fieldDescIndicator = indicatorMap.get(f1);
if(fieldDescIndicator == null
|| (fieldDescIndicator.fieldIndex >= cols.length
&& fieldDescIndicator.fieldDesc.getWriteFlag() == 1)) {
continue;
}
sb.append(cols[fieldDescIndicator.fieldIndex]);
}
writeLine(outputStream, sb.toString(), lineCounter);
}
}
}
JoinFileDescriptor mergedDesc = new JoinFileDescriptor();
mergedDesc.setPath(targetFilePath);
mergedDesc.setLineCnt(lineCounter.get());
mergedDesc.setFieldInfo(
orderedFields.stream()
.map(r -> FileFieldDesc.newField(r, 1))
.collect(Collectors.toList()));
return mergedDesc;
}
/**
* 构造字段下标指示器
*
* @param currentFieldDescList 当前字段排列情况
* @param orderedFields 目标序列的字段列表
* @return {"a":{"fieldIndex":1, "fieldDesc":{"name":"aaa", "writeFlag":1}}}
*/
private Map
composeFieldOrderIndicator(List currentFieldDescList, List
orderedFields) { Map
indicatorMap = new HashMap<>(orderedFields.size()); outer:
for (String f1 : orderedFields) {
for (int i = 0; i < currentFieldDescList.size(); i++) {
FileFieldDesc originField1 = currentFieldDescList.get(i);
if (f1.equals(originField1.getFieldName())) {
indicatorMap.put(f1, new FieldOrderIndicator(i + 1, originField1));
continue outer;
}
}
indicatorMap.put(f1, null);
}
return indicatorMap;
}
/**
* 检测当前文件是按字段先后要求排放好
*
* @param currentFieldDescList 现有文件字段排列情况
* @param orderedFields 期望排列的顺序列表
* @return true:已排好序,无需再排; false:未按要求排好
*/
private boolean checkIfCurrentFileInOrder(List
currentFieldDescList, List
orderedFields) { if(orderedFields.size() != currentFieldDescList.size()) {
return true;
}
for (int j = 0; j < orderedFields.size(); j++) {
String targetFieldName = orderedFields.get(j);
FileFieldDesc possibleFieldDesc = currentFieldDescList.get(j);
if(possibleFieldDesc != null
&& targetFieldName.equals(possibleFieldDesc.getFieldName())
&& possibleFieldDesc.getWriteFlag() == 1) {
continue;
}
return false;
}
return true;
}
/**
* 计算两个数据流取并集 ( A ∪ B)
*
* 并将 A/B 标签位写到后置位置中, 1代表存在,空代表存在
* 如A存在且B存在,则写结果为: A,1,1
* 如A存在但B不存在, 则写结果为: A,1,
* 如A不存在但B存在, 则写结果为: B,,1
*
* 当A或B中存在多列时,以第一列为主键进行关联
* 如A为: 111
* B为: 111,,1,1
* 则合并后的结果为: 111,1,,1,1
*
* @return 最终写入的文件行数
*/
private long unionTwoBufferStream(JoinFileDescriptor a,
JoinFileDescriptor b,
OutputStream targetOutputStream) throws IOException {
String lineDataLeft;
String lineDataRight;
// String lineDataLast = null;
AtomicLong lineNumCounter = new AtomicLong(0);
BufferedReader leftBuffer = a.getReader();
BufferedReader rightBuffer = b.getReader();
lineDataRight = rightBuffer.readLine();
// 主键固定在第一列
int idIndex = 1;
String leftId = null;
String rightId = getIdColumnValueFromLineData(lineDataRight, idIndex);
String lastId = null;
int cmpV;
while ((lineDataLeft = leftBuffer.readLine()) != null) {
// 以左表基础迭代,所以优先检查右表
leftId = getIdColumnValueFromLineData(lineDataLeft, idIndex);
if(lineDataRight != null
&& (cmpV = leftId.compareTo(rightId)) >= 0) {
do {
if(rightId.equals(lastId)) {
lineDataRight = rightBuffer.readLine();
rightId = getIdColumnValueFromLineData(
lineDataRight, idIndex);
// 合并左右数据
continue;
}
writeLine(targetOutputStream,
joinLineData(cmpV == 0 ? lineDataLeft : null,
lineDataRight, a.getFieldInfo(),
b.getFieldInfo()),
lineNumCounter);
lastId = rightId;
lineDataRight = rightBuffer.readLine();
rightId = getIdColumnValueFromLineData(
lineDataRight, idIndex);
} while (lineDataRight != null
&& (cmpV = leftId.compareTo(rightId)) >= 0);
}
// 左右相等时,右表数据已写成功,直接跳过即可
if(leftId.equals(lastId)) {
continue;
}
writeLine(targetOutputStream,
joinLineData(lineDataLeft, null,
a.getFieldInfo(), b.getFieldInfo()),
lineNumCounter);
lastId = leftId;
}
// 处理可能剩余的右表数据
while (lineDataRight != null) {
rightId = getIdColumnValueFromLineData(lineDataRight, idIndex);
if(rightId.equals(lastId)) {
lineDataRight = rightBuffer.readLine();
continue;
}
writeLine(targetOutputStream,
joinLineData(null, lineDataRight,
a.getFieldInfo(), b.getFieldInfo()),
lineNumCounter);
lastId = rightId;
lineDataRight = rightBuffer.readLine();
}
return lineNumCounter.get();
}
/**
* 依据字段顺序合并两行数据(以左行为先)
*
* 最后一个字段为本次需要进行追加的字段
*
* @param leftLineData 左边数据
* @param rightLineData 右边数据
* @param leftFields 左边字段信息(可能未写入左边数据中)
* @param rightFields 右边字段信息(可能未写入右边数据中)
* @return 合并后的结果
*/
private String joinLineData(String leftLineData, String rightLineData,
List
leftFields, List
rightFields) { if(StringUtils.isBlank(leftLineData)
&& StringUtils.isBlank(rightLineData)) {
return "";
}
int leftEmptyFieldIndex = getFieldEmptyPlaceholderIndex(leftFields);
int rightEmptyFieldIndex = getFieldEmptyPlaceholderIndex(rightFields);
// 1. 只有右值, 将右值首字段移至行首,其余放右尾部
if(StringUtils.isBlank(leftLineData)) {
return joinFieldByRight(rightLineData, leftFields,
rightFields, rightEmptyFieldIndex);
}
// 2. 只有左值
if(StringUtils.isBlank(rightLineData)) {
return joinFieldByLeft(leftLineData, leftFields,
rightFields, leftEmptyFieldIndex);
}
// 3. 左右均有部分值
return joinFieldByLeftRight(leftLineData, rightLineData,
leftFields, rightFields,
leftEmptyFieldIndex, rightEmptyFieldIndex);
}
/**
* 关联一行仅有右值的数据
*
* @param rightLineData 右值数据行(可能含有空值占位未填充)
* @param leftFields 左列字段列表
* @param rightFields 右列字段列表
* @param emptyFieldIndex 空占位的
* @return 合并后的字段,此时全部字段均已填充
*/
private String joinFieldByRight(String rightLineData,
List
leftFields, List
rightFields, int emptyFieldIndex) {
String[] rightCols = StringUtils.splitPreserveAllTokens(
rightLineData, CSV_RESULT_FILE_SEPARATOR);
if(emptyFieldIndex != -1
&& rightCols.length != emptyFieldIndex + 1) {
throw new RuntimeException("字段位置不匹配:" + rightCols.length
+ ", 实际未写:" + (emptyFieldIndex + 1));
}
// s1. 填充首列
StringBuilder lineResultBuilder = new StringBuilder(rightCols[0]);
// s2. 填充空值左列
for (int i = 0; i < leftFields.size(); i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);
}
// s3. 填充右值有值列
for (int i = 1; i < rightCols.length; i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR)
.append(rightCols[i]);
}
// s4. 填充右值空值列, 最末留与当前字段使用
if(rightCols.length < rightFields.size() + 1) {
if(emptyFieldIndex != -1) {
for (int i = emptyFieldIndex; i < rightFields.size() - 1; i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);
}
}
// 右值存在字段位写1
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");
}
return lineResultBuilder.toString();
}
/**
* 关联一行仅有右值的数据
*
* @param leftLineData 左值数据行(可能含有空值占位未填充)
* @param leftFields 左列字段列表
* @param rightFields 右列字段列表
* @param emptyFieldIndex 空占位的
* @return 合并后的字段,此时全部字段均已填充
*/
private String joinFieldByLeft(String leftLineData,
List
leftFields, List
rightFields, int emptyFieldIndex) {
String[] cols = StringUtils.splitPreserveAllTokens(
leftLineData, CSV_RESULT_FILE_SEPARATOR);
if(emptyFieldIndex != -1
&& cols.length != emptyFieldIndex + 1) {
throw new RuntimeException("字段位置不匹配:" + cols.length
+ ", 实际未写:" + (emptyFieldIndex + 1));
}
// s1. 直接保留左值非空值
StringBuilder lineResultBuilder = new StringBuilder(leftLineData);
// s2. 填充左值空值
if(cols.length < rightFields.size() + 1) {
if(emptyFieldIndex != -1) {
for (int i = emptyFieldIndex; i < leftFields.size() - 1; i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);
}
}
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");
}
// s3. 填充右值空值
for (int i = 0; i < rightFields.size(); i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);
}
return lineResultBuilder.toString();
}
/**
* 关联一行仅有右值的数据
*
* @param leftLineData 左值数据行(可能含有空值占位未填充)
* @param rightLineData 右值数据行(可能含有空值占位未填充)
* @param leftFields 左列字段列表
* @param rightFields 右列字段列表
* @param leftEmptyFieldIndex 空占位的
* @param rightEmptyFieldIndex 空占位的
* @return 合并后的字段,此时全部字段均已填充
*/
private String joinFieldByLeftRight(String leftLineData,
String rightLineData,
List
leftFields, List
rightFields, int leftEmptyFieldIndex,
int rightEmptyFieldIndex) {
String[] leftCols = StringUtils.splitPreserveAllTokens(
leftLineData, CSV_RESULT_FILE_SEPARATOR);
if(leftEmptyFieldIndex != -1
&& leftCols.length != leftEmptyFieldIndex + 1) {
throw new RuntimeException("字段位置不匹配:" + leftCols.length
+ ", 实际未写:" + (leftEmptyFieldIndex + 1));
}
String[] rightCols = StringUtils.splitPreserveAllTokens(
rightLineData, CSV_RESULT_FILE_SEPARATOR);
if(rightEmptyFieldIndex != -1
&& rightCols.length != rightEmptyFieldIndex + 1) {
throw new RuntimeException("字段位置不匹配:" + rightCols.length
+ ", 实际未写:" + (rightEmptyFieldIndex + 1));
}
// s1. 直接保留左值非空值
StringBuilder lineResultBuilder = new StringBuilder(leftLineData);
// s2. 填充左值空值, 最后一位留给当前字段
if(leftCols.length < leftFields.size() + 1) {
if(leftEmptyFieldIndex != -1) {
for (int i = leftEmptyFieldIndex; i < leftFields.size() - 1; i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);
}
}
// 左值存在字段位写1
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");
}
// s3. 填充右值非空值,第一列忽略
for (int i = 1; i < rightCols.length; i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR)
.append(rightCols[i]);
}
if(rightCols.length < rightFields.size() + 1) {
if(rightEmptyFieldIndex != -1) {
for (int i = rightEmptyFieldIndex; i < rightFields.size() - 1; i++) {
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);
}
}
// 右值存在字段位写1
lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");
}
return lineResultBuilder.toString();
}
/**
* 获取首个字段未被填充值的位置
*
* @param fieldList 所有字段列表
* @return 首个未填充的字段位置
*/
private int getFieldEmptyPlaceholderIndex(List
fieldList) { for (int i = 0; i < fieldList.size(); i++) {
FileFieldDesc f1 = fieldList.get(i);
if(f1.getWriteFlag() == 0) {
return i;
}
}
return -1;
}
/**
* 从一行数据中读取id列字段值
*
* @param lineData 该行内容
* @param idIndex id列所在下标,从1开始计算
* @return id的值
*/
private String getIdColumnValueFromLineData(String lineData,
int idIndex) {
if(lineData == null) {
return null;
}
if(idIndex <= 0) {
log.warn("id行下标给定错误:{},"
+ "返回整行,请注意排查原因", idIndex);
return lineData;
}
// 固定使用','分隔多列数据
String[] cols = StringUtils.splitPreserveAllTokens(lineData, CSV_RESULT_FILE_SEPARATOR);
// 列超限,返回空
if(idIndex > cols.length) {
log.warn("id列下标超限,请排查:{} -> {}", lineData, idIndex);
return "";
}
return cols[idIndex - 1];
}
/**
* 写单行数据到输出流(带计数器)
*/
private void writeLine(OutputStream outputStream,
String lineData,
AtomicLong counter) throws IOException {
if(counter.get() > 0) {
outputStream.write("\n".getBytes());
}
outputStream.write(lineData.getBytes());
counter.incrementAndGet();
}
/**
* 字段序列号指示器
*/
private class FieldOrderIndicator {
int fieldIndex;
FileFieldDesc fieldDesc;
FieldOrderIndicator(int fieldIndex, FileFieldDesc fieldDesc) {
this.fieldIndex = fieldIndex;
this.fieldDesc = fieldDesc;
}
}
/**
* 文件join任务分解类
*/
private static class FileJoinFJTask extends RecursiveTask
{
private static final FileJoiner joiner = new FileJoiner();
private List
fileList;
public FileJoinFJTask(List
fileList) { this.fileList = fileList;
}
@Override
public JoinFileDescriptor compute() {
int len = fileList.size();
if(len > 2) {
int mid = len / 2;
FileJoinFJTask subTask1 = new FileJoinFJTask(fileList.subList(0, mid));
subTask1.fork();
FileJoinFJTask subTask2 = new FileJoinFJTask(fileList.subList(mid, len));
subTask2.fork();
JoinFileDescriptor m1 = subTask1.join();
JoinFileDescriptor m2 = subTask2.join();
return joinTwoFile(m1, m2);
}
if(len == 2) {
return joinTwoFile(fileList.get(0), fileList.get(1));
}
// len == 1
if(len == 1) {
return fileList.get(0);
}
throw new RuntimeException("待合并的文件数为0?->" + fileList.size());
}
/**
* 合并两个有序文件
*
* @param m1 文件1
* @param m2 文件2
* @return 合并后的文件
*/
private JoinFileDescriptor joinTwoFile(JoinFileDescriptor m1, JoinFileDescriptor m2) {
try {
// System.out.println("join file1:" + m1.getPath().substring(82) + ", fields:" + m1.getFieldInfo()
// + ", file2:" + m2.getPath().substring(82) + ", fields:" + m2.getFieldInfo());
return joiner.joinById(m1, m2);
} catch (IOException e) {
log.error("合并文件失败,{}, {}", m1, m2, e);
throw new RuntimeException(e);
}
}
}
}
总体算法框架就是这样了,外部调用时,可以串行计算调用 joinById, 自行合并。也可以直接joinMultiFile, 内部进行并行计算了。然后,最后再可以按照自行要求,做顺序固化。此处并行计算的方案,正则上篇中讲到的fork/join.
2.2. 几个辅助类
如上计算过程中,需要使用一些辅助型数据结构,以表达清楚过程。以下为辅助类信息:
// 1. JoinFileDescriptor
import java.io.BufferedReader;
import java.util.List;
/**
* 功能描述: 需要关联join的文件描述类
*
*/
public class JoinFileDescriptor {
/**
* 文件路径
*/
private String path;
/**
* 文件行数
*/
private long lineCnt;
/**
* 字段名列表,按先后排列写入文件
*/
private List
fieldInfo;
/**
* 合并深度,未合并时为0
*/
private int deep;
public JoinFileDescriptor() {
}
public JoinFileDescriptor(String path, int lineCnt,
List
fieldInfo) { this.path = path;
this.lineCnt = lineCnt;
this.fieldInfo = fieldInfo;
}
private transient BufferedReader reader;
public BufferedReader getReader() {
return reader;
}
public void setReader(BufferedReader reader) {
this.reader = reader;
}
public String getPath() {
return path;
}
public void setPath(String path) {
this.path = path;
}
public long getLineCnt() {
return lineCnt;
}
public void setLineCnt(long lineCnt) {
this.lineCnt = lineCnt;
}
public List
getFieldInfo() { return fieldInfo;
}
public void setFieldInfo(List
fieldInfo) { this.fieldInfo = fieldInfo;
}
public int getDeep() {
return deep;
}
public void incrDeep() {
this.deep++;
}
@Override
public String toString() {
return "JoinFileDescriptor{" +
"path='" + path + '\'' +
", lineCnt=" + lineCnt +
", fieldInfo=" + fieldInfo +
", deep=" + deep +
'}';
}
}
// 2. FileFieldDesc
/**
* 功能描述: 文件字段描述
*
*/
public class FileFieldDesc {
/**
* 字段名列表,按先后排列写入文件
*/
private String fieldName;
/**
* 字段是否被真实写入文件,
*
* 1:已写入,0:未写入(序号排在前面的字段,需要后字段合并时同步写入)
*/
private int writeFlag;
private FileFieldDesc(String fieldName) {
this.fieldName = fieldName;
}
public static FileFieldDesc newField(String fieldName) {
return new FileFieldDesc(fieldName);
}
public static FileFieldDesc newField(String fieldName, int writeFlag) {
FileFieldDesc f = new FileFieldDesc(fieldName);
f.setWriteFlag(writeFlag);
return f;
}
public String getFieldName() {
return fieldName;
}
public void setFieldName(String fieldName) {
this.fieldName = fieldName;
}
public int getWriteFlag() {
return writeFlag;
}
public void setWriteFlag(int writeFlag) {
this.writeFlag = writeFlag;
}
public void writeOk() {
writeFlag = 1;
}
@Override
public String toString() {
return "FileFieldDesc{" +
"fieldName='" + fieldName + '\'' +
", writeFlag=" + writeFlag +
'}';
}
}
还是很简单的吧。
2.3. 单元测试
没有测试不算完成,一个好的测试应该包含所有可能的计算情况,结果。比如几个文件合并,合并后有几行,哪几行的数据应该如何等等。害,那些留给使用者自行完善吧。简单测试如下。
/**
* 功能描述: 文件合并工具类测试
*
*/
public class FileJoinerTest {
@Before
public void setup() {
// 避免log4j解析报错
System.setProperty("catalina.home", "/tmp");
}
@Test
public void testJoinById() throws Exception {
long startTime = System.currentTimeMillis();
List
resultLines; String classpath = this.getClass().getResource("/").getPath();
JoinFileDescriptor file1 = new JoinFileDescriptor(
classpath + "file/t0/crowd_a.csv", 4,
Collections.singletonList(FileFieldDesc.newField("crowd_a")));
JoinFileDescriptor file2 = new JoinFileDescriptor(
classpath + "file/t0/crowd_b.csv", 5,
Collections.singletonList(FileFieldDesc.newField("crowd_b")));
FileJoiner joiner = new FileJoiner();
JoinFileDescriptor fileMerged = joiner.joinById(file1, file2);
resultLines = FileUtils.readLines(new File(fileMerged.getPath()), "utf-8");
System.out.println("result:" + fileMerged);
Assert.assertEquals("合并结果行数不正确", 6L, fileMerged.getLineCnt());
Assert.assertEquals("道行合并结果不正确", "6001,1,1", resultLines.get(0));
Assert.assertEquals("道行合并结果不正确", "6011,,1", resultLines.get(5));
JoinFileDescriptor file3 = new JoinFileDescriptor(
classpath + "file/t0/crowd_c.csv", 5,
Collections.singletonList(FileFieldDesc.newField("crowd_c")));
fileMerged = joiner.joinById(fileMerged, file3);
System.out.println("result3:" + fileMerged);
JoinFileDescriptor file4 = new JoinFileDescriptor(
classpath + "file/t0/crowd_d.csv", 4,
Collections.singletonList(FileFieldDesc.newField("crowd_d")));
fileMerged = joiner.joinById(fileMerged, file4);
System.out.println("result4:" + fileMerged);
JoinFileDescriptor file6 = new JoinFileDescriptor(
classpath + "file/t0/crowd_f.csv", 4,
Collections.singletonList(FileFieldDesc.newField("crowd_f")));
fileMerged = joiner.joinById(fileMerged, file6);
System.out.println("result4:" + fileMerged);
JoinFileDescriptor file5 = new JoinFileDescriptor(
classpath + "file/t0/crowd_e.csv", 4,
Collections.singletonList(FileFieldDesc.newField("crowd_e")));
fileMerged = joiner.joinById(fileMerged, file5);
System.out.println("result4:" + fileMerged);
fileMerged = joiner.rewriteFileBySelectField(fileMerged,
Arrays.asList("crowd_a", "crowd_b", "crowd_c",
"crowd_d", "crowd_e", "crowd_f"));
System.out.println("result4:" + fileMerged);
System.out.println("costTime:" + (System.currentTimeMillis() - startTime) + "ms");
}
@Test
public void testJoinByIdUseForkJoin() throws Exception {
long startTime = System.currentTimeMillis();
List
sortedFileList = new ArrayList<>(); String classpath = this.getClass().getResource("/").getPath();
JoinFileDescriptor file1 = new JoinFileDescriptor(
classpath + "file/t0/crowd_a.csv", 4,
Collections.singletonList(FileFieldDesc.newField("crowd_a")));
sortedFileList.add(file1);
JoinFileDescriptor file2 = new JoinFileDescriptor(
classpath + "file/t0/crowd_b.csv", 5,
Collections.singletonList(FileFieldDesc.newField("crowd_b")));
sortedFileList.add(file2);
JoinFileDescriptor file3 = new JoinFileDescriptor(
classpath + "file/t0/crowd_c.csv", 5,
Collections.singletonList(FileFieldDesc.newField("crowd_c")));
sortedFileList.add(file3);
JoinFileDescriptor file4 = new JoinFileDescriptor(
classpath + "file/t0/crowd_d.csv", 4,
Collections.singletonList(FileFieldDesc.newField("crowd_d")));
sortedFileList.add(file4);
JoinFileDescriptor file5 = new JoinFileDescriptor(
classpath + "file/t0/crowd_e.csv", 10,
Collections.singletonList(FileFieldDesc.newField("crowd_e")));
sortedFileList.add(file5);
JoinFileDescriptor file6 = new JoinFileDescriptor(
classpath + "file/t0/crowd_f.csv", 10,
Collections.singletonList(FileFieldDesc.newField("crowd_f")));
sortedFileList.add(file6);
Collections.shuffle(sortedFileList);
FileJoiner joiner = new FileJoiner();
JoinFileDescriptor fileMerged = joiner.joinMultiFile(sortedFileList,
Arrays.asList("crowd_a", "crowd_b", "crowd_c",
"crowd_d", "crowd_e", "crowd_f"));
System.out.println("fileMerged:" + fileMerged);
System.out.println("costTime:" + (System.currentTimeMillis() - startTime) + "ms");
}
}
下面这个并行计算没有断言,一是懒得加,二是这种确实也复杂,这也是和分布系统排查问题难表暗合之意。另外值得一提的是,为了验证代码的稳定性,单测中添加了一个文件的随机打乱,从而保证了任意顺序都可拿到最终结果。而在实际应用中,可以按照文件行数大小排序,使用小文件与小文件合,大文件与大文件合,从而避免许多空行读而浪费性能。这也是自己实现的好处,想起来哪里想调整下,立即横刀立马。
下面给几个样例文件:
// crowd_a.csv
6001
6002
6003
6009
// crowd_b.csv
6001
6002
6003
6006
6011
// crowd_c.csv
6001
6003
6006
6009
...
e,f,g
...
以上工具类,可以看作是对前面所示sql语义的同等实现,虽不能与官方同日而语,但也有一定的应用场景,只待各位发现。供诸君参考。(谁知道呢,也许你用MR更简单更高效)
腾讯、阿里、滴滴后台面试题汇总总结 — (含答案)
面试:史上最全多线程面试题 !
最新阿里内推Java后端面试题
JVM难学?那是因为你没认真看完这篇文章
关注作者微信公众号 —《JAVA烂猪皮》
了解更多java后端架构知识以及最新面试宝典
看完本文记得给作者点赞+在看哦~~~大家的支持,是作者源源不断出文的动力
原文作者:【等你归去来】
文章出处:https://www.cnblogs.com/yougewe/p/14950347.html