基于文件的多表join实现参考
用例:有N个文件,每个文件只有一列主键,每个文件代表一种属性。即当如PRI1主键在A文件中,说明PRI1具有A属性。这种场景,一般用于数据的筛选,比如需要既有属性A又有属性B的主键有哪些?就是这类场景。
如何处理该场景?
1.解题思路
如果抛却如题所说文件限制,那我们如何解决?
比如,我们可以将每个文件数据导入到redis中,数据结构为hash, redis-key为pri主键,hash-key为属性X, hash-value为1或不存在。在做判定的时候,只需找到对应的key, 再去判断其是否具有对应属性即可解决问题了。
这个方案看起来比较合适,但有两个缺点:1. redis内存数据库,容量有限,不一定能满足大数据量的场景; 2. 针对反向查询的需求无法满足,即想要查找既含有A属性又含有B属性的主键列表,就很难办到。
再比如,我们可以使用类似于mysql之类的关系型数据,先将单文件数据导致单表中,表名以相应属性标识命名,然后以sql形式进行临时计算即可。sql参考如下:
select COALESCE(ta.id,tb.id) as id,case when ta.id is not null then 1 else 0 end as ta_flag,case when tb.id is not null then 1 else 0 end as tb_flagfrom table_a as tafull join table_b as tb on ta.id=tb.id;
应该说这种解决方案算是比较好的了,在计算不大的情况下,这种复杂度在数据库领域简直是小场面了。需要再次说明的是,在数据库会新建一个个的小表,它只有一列主键数据,然后在查询的时候再进行计算。这种方案的问题在于,当标识越来越多之后,就会导致小表会越来越多,甚至可能超出数据库限制。原本是一个一般的需求,却要要求非常好数据库支持,也不太好嘛。
不过,上面这个问题,也可以解决。比如我们可以使用行转列的形式,将以上小表转换成一张大表,随后将小表删除,从而达到数据库的普通要求。合并语句也不复杂。参考如下:
create table w_xx asselect COALESCE(ta.id,tb.id) as id,case when ta.id is not null then 1 else 0 end as ta_flag,case when tb.id is not null then 1 else 0 end as tb_flagfrom table_a as tafull join table_b as tb on ta.id=tb.id;
如此,基本完美了。
2. 基于文件的行转列数据join
如果我没有外部存储介质,那当如何?如题,直接基于文件,将多个合并起来。看起来并非难事。
如果不考虑内存问题,则可以将每个文件读入为list, 转换为map存储,和上面的redis实现方案类似。只是可能不太现实,也比较简单,忽略实现。
再简单化,如果我们每个文件中保存的主键都是有序的,要想合并就更简单了。
基本思路是,两两文件合并,依次读取行,然后比对是否有相等的值,然后写到新文件中即可。
另外,如果要做并行计算,可以考虑使用上一篇文章提到的 fork/join 框架,非常合场景呢。
2.1. 文件行转列合并主体框架
主要算法为依次遍历各文件,进行数据判定,然后写目标文件。具体实现如下:
/*** 功能描述: 文件合并工具类**/@Slf4jpublic class FileJoiner {/*** router结果文件分隔符*/private static final String CSV_RESULT_FILE_SEPARATOR = ",";/*** 合并文件语义,等价sql:* select coalesce(a.id, b.id, c.id...) id,* case when a.id is not null then '1' else '' end f_a,* case when b.id is not null then '1' else '' end f_b,* ...* from a* full join b on a.id = b.id* full join c on a.id = c.id* ...* ;*/public JoinFileDescriptor joinById(JoinFileDescriptor a,JoinFileDescriptor b) throws IOException {JoinFileDescriptor mergedDesc = new JoinFileDescriptor();if(a.getLineCnt() <= 0 && b.getLineCnt() <= 0) {ListfieldDesc = new ArrayList<>(); // 先a后bfieldDesc.addAll(a.getFieldInfo());fieldDesc.addAll(b.getFieldInfo());mergedDesc.setFieldInfo(fieldDesc);return mergedDesc;}if(a.getLineCnt() <= 0) {ListfieldDesc = new ArrayList<>(); // 先b后afieldDesc.addAll(b.getFieldInfo());fieldDesc.addAll(a.getFieldInfo());mergedDesc.setFieldInfo(fieldDesc);return mergedDesc;}if(b.getLineCnt() <= 0) {ListfieldDesc = new ArrayList<>(); // 先a后bfieldDesc.addAll(a.getFieldInfo());fieldDesc.addAll(b.getFieldInfo());mergedDesc.setFieldInfo(fieldDesc);return mergedDesc;}// 正式合并 a b 表String mergedPath = a.getPath() + ".m" + a.getDeep();long cnt = -1;try(BufferedReader aReader = new BufferedReader(new FileReader(a.getPath()))) {try(BufferedReader bReader = new BufferedReader(new FileReader(b.getPath()))) {a.setReader(aReader);b.setReader(bReader);try(OutputStream outputStream = FileUtils.openOutputStream(new File(mergedPath))) {cnt = unionTwoBufferStream(a, b, outputStream);}}}mergedDesc.setPath(mergedPath);mergedDesc.setLineCnt(cnt);mergedDesc.incrDeep();// 先a后bListfieldDesc = new ArrayList<>(); a.getFieldInfo().forEach(FileFieldDesc::writeOk);b.getFieldInfo().forEach(FileFieldDesc::writeOk);fieldDesc.addAll(a.getFieldInfo());fieldDesc.addAll(b.getFieldInfo());mergedDesc.setFieldInfo(fieldDesc);return mergedDesc;}/*** 合并多文件,无序的,但各字段位置可定位** @param fileList 待合并的文件列表* @param orderedFieldList 需要按序排列* @return 合并后文件信息及字段列表* @throws Exception 合并出错抛出*/public JoinFileDescriptor joinMultiFile(ListfileList, ListorderedFieldList) throws Exception { ForkJoinPool forkJoinPool = new ForkJoinPool();FileJoinFJTask fjTask = new FileJoinFJTask(fileList);ForkJoinTaskfuture = forkJoinPool.submit(fjTask); JoinFileDescriptor mergedFile = future.get();// ListorderedFieldList = new ArrayList<>(); // for (JoinFileDescriptor file1 : fileList) {// Listfield1 = file1.getFieldInfo().stream() // .map(FileFieldDesc::getFieldName)// .collect(Collectors.toList());// orderedFieldList.addAll(field1);// }return rewriteFileBySelectField(mergedFile, orderedFieldList);}/*** 按照要求字段顺序重写文件内容** @param originFile 当前文件描述* @param orderedFields 目标字段序列* @return 处理好的文件实例(元数据或获取)* @throws IOException 写文件异常抛出*/public JoinFileDescriptor rewriteFileBySelectField(JoinFileDescriptor originFile,ListorderedFields) throws IOException { ListfieldDescList = originFile.getFieldInfo(); if(checkIfCurrentFileInOrder(fieldDescList, orderedFields)) {log.info("当前文件已按要求排放好,无需再排: {}", orderedFields);return originFile;}MapindicatorMap = composeFieldOrderIndicator(fieldDescList, orderedFields); AtomicLong lineCounter = new AtomicLong(0);String targetFilePath = originFile.getPath() + ".of";try(BufferedReader aReader = new BufferedReader(new FileReader(originFile.getPath()))) {try(OutputStream outputStream = FileUtils.openOutputStream(new File(targetFilePath))) {String lineData;while ((lineData = aReader.readLine()) != null) {String[] cols = StringUtils.splitPreserveAllTokens(lineData, CSV_RESULT_FILE_SEPARATOR);// 空行if(cols.length == 0) {continue;}// id,1,...StringBuilder sb = new StringBuilder(cols[0]);for (String f1 : orderedFields) {sb.append(CSV_RESULT_FILE_SEPARATOR);FieldOrderIndicator fieldDescIndicator = indicatorMap.get(f1);if(fieldDescIndicator == null|| (fieldDescIndicator.fieldIndex >= cols.length&& fieldDescIndicator.fieldDesc.getWriteFlag() == 1)) {continue;}sb.append(cols[fieldDescIndicator.fieldIndex]);}writeLine(outputStream, sb.toString(), lineCounter);}}}JoinFileDescriptor mergedDesc = new JoinFileDescriptor();mergedDesc.setPath(targetFilePath);mergedDesc.setLineCnt(lineCounter.get());mergedDesc.setFieldInfo(orderedFields.stream().map(r -> FileFieldDesc.newField(r, 1)).collect(Collectors.toList()));return mergedDesc;}/*** 构造字段下标指示器** @param currentFieldDescList 当前字段排列情况* @param orderedFields 目标序列的字段列表* @return {"a":{"fieldIndex":1, "fieldDesc":{"name":"aaa", "writeFlag":1}}}*/private MapcomposeFieldOrderIndicator(List currentFieldDescList, ListorderedFields) { MapindicatorMap = new HashMap<>(orderedFields.size()); outer:for (String f1 : orderedFields) {for (int i = 0; i < currentFieldDescList.size(); i++) {FileFieldDesc originField1 = currentFieldDescList.get(i);if (f1.equals(originField1.getFieldName())) {indicatorMap.put(f1, new FieldOrderIndicator(i + 1, originField1));continue outer;}}indicatorMap.put(f1, null);}return indicatorMap;}/*** 检测当前文件是按字段先后要求排放好** @param currentFieldDescList 现有文件字段排列情况* @param orderedFields 期望排列的顺序列表* @return true:已排好序,无需再排; false:未按要求排好*/private boolean checkIfCurrentFileInOrder(ListcurrentFieldDescList, ListorderedFields) { if(orderedFields.size() != currentFieldDescList.size()) {return true;}for (int j = 0; j < orderedFields.size(); j++) {String targetFieldName = orderedFields.get(j);FileFieldDesc possibleFieldDesc = currentFieldDescList.get(j);if(possibleFieldDesc != null&& targetFieldName.equals(possibleFieldDesc.getFieldName())&& possibleFieldDesc.getWriteFlag() == 1) {continue;}return false;}return true;}/*** 计算两个数据流取并集 ( A ∪ B)** 并将 A/B 标签位写到后置位置中, 1代表存在,空代表存在* 如A存在且B存在,则写结果为: A,1,1* 如A存在但B不存在, 则写结果为: A,1,* 如A不存在但B存在, 则写结果为: B,,1** 当A或B中存在多列时,以第一列为主键进行关联* 如A为: 111* B为: 111,,1,1* 则合并后的结果为: 111,1,,1,1** @return 最终写入的文件行数*/private long unionTwoBufferStream(JoinFileDescriptor a,JoinFileDescriptor b,OutputStream targetOutputStream) throws IOException {String lineDataLeft;String lineDataRight;// String lineDataLast = null;AtomicLong lineNumCounter = new AtomicLong(0);BufferedReader leftBuffer = a.getReader();BufferedReader rightBuffer = b.getReader();lineDataRight = rightBuffer.readLine();// 主键固定在第一列int idIndex = 1;String leftId = null;String rightId = getIdColumnValueFromLineData(lineDataRight, idIndex);String lastId = null;int cmpV;while ((lineDataLeft = leftBuffer.readLine()) != null) {// 以左表基础迭代,所以优先检查右表leftId = getIdColumnValueFromLineData(lineDataLeft, idIndex);if(lineDataRight != null&& (cmpV = leftId.compareTo(rightId)) >= 0) {do {if(rightId.equals(lastId)) {lineDataRight = rightBuffer.readLine();rightId = getIdColumnValueFromLineData(lineDataRight, idIndex);// 合并左右数据continue;}writeLine(targetOutputStream,joinLineData(cmpV == 0 ? lineDataLeft : null,lineDataRight, a.getFieldInfo(),b.getFieldInfo()),lineNumCounter);lastId = rightId;lineDataRight = rightBuffer.readLine();rightId = getIdColumnValueFromLineData(lineDataRight, idIndex);} while (lineDataRight != null&& (cmpV = leftId.compareTo(rightId)) >= 0);}// 左右相等时,右表数据已写成功,直接跳过即可if(leftId.equals(lastId)) {continue;}writeLine(targetOutputStream,joinLineData(lineDataLeft, null,a.getFieldInfo(), b.getFieldInfo()),lineNumCounter);lastId = leftId;}// 处理可能剩余的右表数据while (lineDataRight != null) {rightId = getIdColumnValueFromLineData(lineDataRight, idIndex);if(rightId.equals(lastId)) {lineDataRight = rightBuffer.readLine();continue;}writeLine(targetOutputStream,joinLineData(null, lineDataRight,a.getFieldInfo(), b.getFieldInfo()),lineNumCounter);lastId = rightId;lineDataRight = rightBuffer.readLine();}return lineNumCounter.get();}/*** 依据字段顺序合并两行数据(以左行为先)** 最后一个字段为本次需要进行追加的字段** @param leftLineData 左边数据* @param rightLineData 右边数据* @param leftFields 左边字段信息(可能未写入左边数据中)* @param rightFields 右边字段信息(可能未写入右边数据中)* @return 合并后的结果*/private String joinLineData(String leftLineData, String rightLineData,ListleftFields, ListrightFields) { if(StringUtils.isBlank(leftLineData)&& StringUtils.isBlank(rightLineData)) {return "";}int leftEmptyFieldIndex = getFieldEmptyPlaceholderIndex(leftFields);int rightEmptyFieldIndex = getFieldEmptyPlaceholderIndex(rightFields);// 1. 只有右值, 将右值首字段移至行首,其余放右尾部if(StringUtils.isBlank(leftLineData)) {return joinFieldByRight(rightLineData, leftFields,rightFields, rightEmptyFieldIndex);}// 2. 只有左值if(StringUtils.isBlank(rightLineData)) {return joinFieldByLeft(leftLineData, leftFields,rightFields, leftEmptyFieldIndex);}// 3. 左右均有部分值return joinFieldByLeftRight(leftLineData, rightLineData,leftFields, rightFields,leftEmptyFieldIndex, rightEmptyFieldIndex);}/*** 关联一行仅有右值的数据** @param rightLineData 右值数据行(可能含有空值占位未填充)* @param leftFields 左列字段列表* @param rightFields 右列字段列表* @param emptyFieldIndex 空占位的* @return 合并后的字段,此时全部字段均已填充*/private String joinFieldByRight(String rightLineData,ListleftFields, ListrightFields, int emptyFieldIndex) {String[] rightCols = StringUtils.splitPreserveAllTokens(rightLineData, CSV_RESULT_FILE_SEPARATOR);if(emptyFieldIndex != -1&& rightCols.length != emptyFieldIndex + 1) {throw new RuntimeException("字段位置不匹配:" + rightCols.length+ ", 实际未写:" + (emptyFieldIndex + 1));}// s1. 填充首列StringBuilder lineResultBuilder = new StringBuilder(rightCols[0]);// s2. 填充空值左列for (int i = 0; i < leftFields.size(); i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);}// s3. 填充右值有值列for (int i = 1; i < rightCols.length; i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append(rightCols[i]);}// s4. 填充右值空值列, 最末留与当前字段使用if(rightCols.length < rightFields.size() + 1) {if(emptyFieldIndex != -1) {for (int i = emptyFieldIndex; i < rightFields.size() - 1; i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);}}// 右值存在字段位写1lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");}return lineResultBuilder.toString();}/*** 关联一行仅有右值的数据** @param leftLineData 左值数据行(可能含有空值占位未填充)* @param leftFields 左列字段列表* @param rightFields 右列字段列表* @param emptyFieldIndex 空占位的* @return 合并后的字段,此时全部字段均已填充*/private String joinFieldByLeft(String leftLineData,ListleftFields, ListrightFields, int emptyFieldIndex) {String[] cols = StringUtils.splitPreserveAllTokens(leftLineData, CSV_RESULT_FILE_SEPARATOR);if(emptyFieldIndex != -1&& cols.length != emptyFieldIndex + 1) {throw new RuntimeException("字段位置不匹配:" + cols.length+ ", 实际未写:" + (emptyFieldIndex + 1));}// s1. 直接保留左值非空值StringBuilder lineResultBuilder = new StringBuilder(leftLineData);// s2. 填充左值空值if(cols.length < rightFields.size() + 1) {if(emptyFieldIndex != -1) {for (int i = emptyFieldIndex; i < leftFields.size() - 1; i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);}}lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");}// s3. 填充右值空值for (int i = 0; i < rightFields.size(); i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);}return lineResultBuilder.toString();}/*** 关联一行仅有右值的数据** @param leftLineData 左值数据行(可能含有空值占位未填充)* @param rightLineData 右值数据行(可能含有空值占位未填充)* @param leftFields 左列字段列表* @param rightFields 右列字段列表* @param leftEmptyFieldIndex 空占位的* @param rightEmptyFieldIndex 空占位的* @return 合并后的字段,此时全部字段均已填充*/private String joinFieldByLeftRight(String leftLineData,String rightLineData,ListleftFields, ListrightFields, int leftEmptyFieldIndex,int rightEmptyFieldIndex) {String[] leftCols = StringUtils.splitPreserveAllTokens(leftLineData, CSV_RESULT_FILE_SEPARATOR);if(leftEmptyFieldIndex != -1&& leftCols.length != leftEmptyFieldIndex + 1) {throw new RuntimeException("字段位置不匹配:" + leftCols.length+ ", 实际未写:" + (leftEmptyFieldIndex + 1));}String[] rightCols = StringUtils.splitPreserveAllTokens(rightLineData, CSV_RESULT_FILE_SEPARATOR);if(rightEmptyFieldIndex != -1&& rightCols.length != rightEmptyFieldIndex + 1) {throw new RuntimeException("字段位置不匹配:" + rightCols.length+ ", 实际未写:" + (rightEmptyFieldIndex + 1));}// s1. 直接保留左值非空值StringBuilder lineResultBuilder = new StringBuilder(leftLineData);// s2. 填充左值空值, 最后一位留给当前字段if(leftCols.length < leftFields.size() + 1) {if(leftEmptyFieldIndex != -1) {for (int i = leftEmptyFieldIndex; i < leftFields.size() - 1; i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);}}// 左值存在字段位写1lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");}// s3. 填充右值非空值,第一列忽略for (int i = 1; i < rightCols.length; i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append(rightCols[i]);}if(rightCols.length < rightFields.size() + 1) {if(rightEmptyFieldIndex != -1) {for (int i = rightEmptyFieldIndex; i < rightFields.size() - 1; i++) {lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR);}}// 右值存在字段位写1lineResultBuilder.append(CSV_RESULT_FILE_SEPARATOR).append("1");}return lineResultBuilder.toString();}/*** 获取首个字段未被填充值的位置** @param fieldList 所有字段列表* @return 首个未填充的字段位置*/private int getFieldEmptyPlaceholderIndex(ListfieldList) { for (int i = 0; i < fieldList.size(); i++) {FileFieldDesc f1 = fieldList.get(i);if(f1.getWriteFlag() == 0) {return i;}}return -1;}/*** 从一行数据中读取id列字段值** @param lineData 该行内容* @param idIndex id列所在下标,从1开始计算* @return id的值*/private String getIdColumnValueFromLineData(String lineData,int idIndex) {if(lineData == null) {return null;}if(idIndex <= 0) {log.warn("id行下标给定错误:{},"+ "返回整行,请注意排查原因", idIndex);return lineData;}// 固定使用','分隔多列数据String[] cols = StringUtils.splitPreserveAllTokens(lineData, CSV_RESULT_FILE_SEPARATOR);// 列超限,返回空if(idIndex > cols.length) {log.warn("id列下标超限,请排查:{} -> {}", lineData, idIndex);return "";}return cols[idIndex - 1];}/*** 写单行数据到输出流(带计数器)*/private void writeLine(OutputStream outputStream,String lineData,AtomicLong counter) throws IOException {if(counter.get() > 0) {outputStream.write("\n".getBytes());}outputStream.write(lineData.getBytes());counter.incrementAndGet();}/*** 字段序列号指示器*/private class FieldOrderIndicator {int fieldIndex;FileFieldDesc fieldDesc;FieldOrderIndicator(int fieldIndex, FileFieldDesc fieldDesc) {this.fieldIndex = fieldIndex;this.fieldDesc = fieldDesc;}}/*** 文件join任务分解类*/private static class FileJoinFJTask extends RecursiveTask{ private static final FileJoiner joiner = new FileJoiner();private ListfileList; public FileJoinFJTask(ListfileList) { this.fileList = fileList;}@Overridepublic JoinFileDescriptor compute() {int len = fileList.size();if(len > 2) {int mid = len / 2;FileJoinFJTask subTask1 = new FileJoinFJTask(fileList.subList(0, mid));subTask1.fork();FileJoinFJTask subTask2 = new FileJoinFJTask(fileList.subList(mid, len));subTask2.fork();JoinFileDescriptor m1 = subTask1.join();JoinFileDescriptor m2 = subTask2.join();return joinTwoFile(m1, m2);}if(len == 2) {return joinTwoFile(fileList.get(0), fileList.get(1));}// len == 1if(len == 1) {return fileList.get(0);}throw new RuntimeException("待合并的文件数为0?->" + fileList.size());}/*** 合并两个有序文件** @param m1 文件1* @param m2 文件2* @return 合并后的文件*/private JoinFileDescriptor joinTwoFile(JoinFileDescriptor m1, JoinFileDescriptor m2) {try {// System.out.println("join file1:" + m1.getPath().substring(82) + ", fields:" + m1.getFieldInfo()// + ", file2:" + m2.getPath().substring(82) + ", fields:" + m2.getFieldInfo());return joiner.joinById(m1, m2);} catch (IOException e) {log.error("合并文件失败,{}, {}", m1, m2, e);throw new RuntimeException(e);}}}}
总体算法框架就是这样了,外部调用时,可以串行计算调用 joinById, 自行合并。也可以直接joinMultiFile, 内部进行并行计算了。然后,最后再可以按照自行要求,做顺序固化。此处并行计算的方案,正则上篇中讲到的fork/join.
2.2. 几个辅助类
如上计算过程中,需要使用一些辅助型数据结构,以表达清楚过程。以下为辅助类信息:
// 1. JoinFileDescriptorimport java.io.BufferedReader;import java.util.List;/*** 功能描述: 需要关联join的文件描述类**/public class JoinFileDescriptor {/*** 文件路径*/private String path;/*** 文件行数*/private long lineCnt;/*** 字段名列表,按先后排列写入文件*/private ListfieldInfo; /*** 合并深度,未合并时为0*/private int deep;public JoinFileDescriptor() {}public JoinFileDescriptor(String path, int lineCnt,ListfieldInfo) { this.path = path;this.lineCnt = lineCnt;this.fieldInfo = fieldInfo;}private transient BufferedReader reader;public BufferedReader getReader() {return reader;}public void setReader(BufferedReader reader) {this.reader = reader;}public String getPath() {return path;}public void setPath(String path) {this.path = path;}public long getLineCnt() {return lineCnt;}public void setLineCnt(long lineCnt) {this.lineCnt = lineCnt;}public ListgetFieldInfo() { return fieldInfo;}public void setFieldInfo(ListfieldInfo) { this.fieldInfo = fieldInfo;}public int getDeep() {return deep;}public void incrDeep() {this.deep++;}@Overridepublic String toString() {return "JoinFileDescriptor{" +"path='" + path + '\'' +", lineCnt=" + lineCnt +", fieldInfo=" + fieldInfo +", deep=" + deep +'}';}}// 2. FileFieldDesc/*** 功能描述: 文件字段描述**/public class FileFieldDesc {/*** 字段名列表,按先后排列写入文件*/private String fieldName;/*** 字段是否被真实写入文件,** 1:已写入,0:未写入(序号排在前面的字段,需要后字段合并时同步写入)*/private int writeFlag;private FileFieldDesc(String fieldName) {this.fieldName = fieldName;}public static FileFieldDesc newField(String fieldName) {return new FileFieldDesc(fieldName);}public static FileFieldDesc newField(String fieldName, int writeFlag) {FileFieldDesc f = new FileFieldDesc(fieldName);f.setWriteFlag(writeFlag);return f;}public String getFieldName() {return fieldName;}public void setFieldName(String fieldName) {this.fieldName = fieldName;}public int getWriteFlag() {return writeFlag;}public void setWriteFlag(int writeFlag) {this.writeFlag = writeFlag;}public void writeOk() {writeFlag = 1;}@Overridepublic String toString() {return "FileFieldDesc{" +"fieldName='" + fieldName + '\'' +", writeFlag=" + writeFlag +'}';}}
还是很简单的吧。
2.3. 单元测试
没有测试不算完成,一个好的测试应该包含所有可能的计算情况,结果。比如几个文件合并,合并后有几行,哪几行的数据应该如何等等。害,那些留给使用者自行完善吧。简单测试如下。
/*** 功能描述: 文件合并工具类测试**/public class FileJoinerTest {@Beforepublic void setup() {// 避免log4j解析报错System.setProperty("catalina.home", "/tmp");}@Testpublic void testJoinById() throws Exception {long startTime = System.currentTimeMillis();ListresultLines; String classpath = this.getClass().getResource("/").getPath();JoinFileDescriptor file1 = new JoinFileDescriptor(classpath + "file/t0/crowd_a.csv", 4,Collections.singletonList(FileFieldDesc.newField("crowd_a")));JoinFileDescriptor file2 = new JoinFileDescriptor(classpath + "file/t0/crowd_b.csv", 5,Collections.singletonList(FileFieldDesc.newField("crowd_b")));FileJoiner joiner = new FileJoiner();JoinFileDescriptor fileMerged = joiner.joinById(file1, file2);resultLines = FileUtils.readLines(new File(fileMerged.getPath()), "utf-8");System.out.println("result:" + fileMerged);Assert.assertEquals("合并结果行数不正确", 6L, fileMerged.getLineCnt());Assert.assertEquals("道行合并结果不正确", "6001,1,1", resultLines.get(0));Assert.assertEquals("道行合并结果不正确", "6011,,1", resultLines.get(5));JoinFileDescriptor file3 = new JoinFileDescriptor(classpath + "file/t0/crowd_c.csv", 5,Collections.singletonList(FileFieldDesc.newField("crowd_c")));fileMerged = joiner.joinById(fileMerged, file3);System.out.println("result3:" + fileMerged);JoinFileDescriptor file4 = new JoinFileDescriptor(classpath + "file/t0/crowd_d.csv", 4,Collections.singletonList(FileFieldDesc.newField("crowd_d")));fileMerged = joiner.joinById(fileMerged, file4);System.out.println("result4:" + fileMerged);JoinFileDescriptor file6 = new JoinFileDescriptor(classpath + "file/t0/crowd_f.csv", 4,Collections.singletonList(FileFieldDesc.newField("crowd_f")));fileMerged = joiner.joinById(fileMerged, file6);System.out.println("result4:" + fileMerged);JoinFileDescriptor file5 = new JoinFileDescriptor(classpath + "file/t0/crowd_e.csv", 4,Collections.singletonList(FileFieldDesc.newField("crowd_e")));fileMerged = joiner.joinById(fileMerged, file5);System.out.println("result4:" + fileMerged);fileMerged = joiner.rewriteFileBySelectField(fileMerged,Arrays.asList("crowd_a", "crowd_b", "crowd_c","crowd_d", "crowd_e", "crowd_f"));System.out.println("result4:" + fileMerged);System.out.println("costTime:" + (System.currentTimeMillis() - startTime) + "ms");}@Testpublic void testJoinByIdUseForkJoin() throws Exception {long startTime = System.currentTimeMillis();ListsortedFileList = new ArrayList<>(); String classpath = this.getClass().getResource("/").getPath();JoinFileDescriptor file1 = new JoinFileDescriptor(classpath + "file/t0/crowd_a.csv", 4,Collections.singletonList(FileFieldDesc.newField("crowd_a")));sortedFileList.add(file1);JoinFileDescriptor file2 = new JoinFileDescriptor(classpath + "file/t0/crowd_b.csv", 5,Collections.singletonList(FileFieldDesc.newField("crowd_b")));sortedFileList.add(file2);JoinFileDescriptor file3 = new JoinFileDescriptor(classpath + "file/t0/crowd_c.csv", 5,Collections.singletonList(FileFieldDesc.newField("crowd_c")));sortedFileList.add(file3);JoinFileDescriptor file4 = new JoinFileDescriptor(classpath + "file/t0/crowd_d.csv", 4,Collections.singletonList(FileFieldDesc.newField("crowd_d")));sortedFileList.add(file4);JoinFileDescriptor file5 = new JoinFileDescriptor(classpath + "file/t0/crowd_e.csv", 10,Collections.singletonList(FileFieldDesc.newField("crowd_e")));sortedFileList.add(file5);JoinFileDescriptor file6 = new JoinFileDescriptor(classpath + "file/t0/crowd_f.csv", 10,Collections.singletonList(FileFieldDesc.newField("crowd_f")));sortedFileList.add(file6);Collections.shuffle(sortedFileList);FileJoiner joiner = new FileJoiner();JoinFileDescriptor fileMerged = joiner.joinMultiFile(sortedFileList,Arrays.asList("crowd_a", "crowd_b", "crowd_c","crowd_d", "crowd_e", "crowd_f"));System.out.println("fileMerged:" + fileMerged);System.out.println("costTime:" + (System.currentTimeMillis() - startTime) + "ms");}}
下面这个并行计算没有断言,一是懒得加,二是这种确实也复杂,这也是和分布系统排查问题难表暗合之意。另外值得一提的是,为了验证代码的稳定性,单测中添加了一个文件的随机打乱,从而保证了任意顺序都可拿到最终结果。而在实际应用中,可以按照文件行数大小排序,使用小文件与小文件合,大文件与大文件合,从而避免许多空行读而浪费性能。这也是自己实现的好处,想起来哪里想调整下,立即横刀立马。
下面给几个样例文件:
// crowd_a.csv6001600260036009// crowd_b.csv60016002600360066011// crowd_c.csv6001600360066009...e,f,g...
以上工具类,可以看作是对前面所示sql语义的同等实现,虽不能与官方同日而语,但也有一定的应用场景,只待各位发现。供诸君参考。(谁知道呢,也许你用MR更简单更高效)

腾讯、阿里、滴滴后台面试题汇总总结 — (含答案)
面试:史上最全多线程面试题 !
最新阿里内推Java后端面试题
JVM难学?那是因为你没认真看完这篇文章

关注作者微信公众号 —《JAVA烂猪皮》
了解更多java后端架构知识以及最新面试宝典


看完本文记得给作者点赞+在看哦~~~大家的支持,是作者源源不断出文的动力
原文作者:【等你归去来】
文章出处:https://www.cnblogs.com/yougewe/p/14950347.html
