粉丝:什么情况下,hive 只会产生一个reduce任务,而没有maptask
今天下午,在微信群里看到粉丝聊天,提到了一个某公司的面试题:
什么情况下,hive 只会产生一个reduce任务,而没有maptask
这个问题是不是很神奇?
我们常规使用的mapreducer任务执行过程大致如下图:
appmaster通过某种策略计算数据源可以做多少分片(getSplits方法),对应的生成固定数量的maptask,假如存在shuffle的话,就根据默认或者指定的reducer数,将数据分散给特定数量的reducer。不存在shuffle的话,reducer可以为零的。
正常逻辑:
mapTask的职责就是负责读数据,做ETL,也可以利用combiner局部聚合;ReduceTask输入严重依赖于mapper输出,所以‘一直’的逻辑仅有reducer无法执行的。
没有maptask,仅有一个reducerTask的hive任务。有点违背我们的使用常识了哦。
其实,正常使用的情况下,hive的sql模式执行引擎还是主要依赖于hadoop的mapreduce计算框架。
但是仅仅依赖于sql,然后依赖于hadoop的mapreduce,显然不能满足hive的野心的。所以hive想提供一个单独的可以使用java编写的hive自己的map/reduce的框架。
你在hive搜索reducer可以直接找到hive自己的reducer。
hql常规解析后依赖的mapreduce主要还是ExecReducer/ExecMapper--通过实现hadoop的mapper和reducer来实现具体执行逻辑。
hive自己的mapreducer有一个实现案例,就是GenericMR,实现源码如下:
public final class GenericMR {
public void map(final InputStream in, final OutputStream out,
final Mapper mapper) throws Exception {
map(new InputStreamReader(in), new OutputStreamWriter(out), mapper);
}
public void map(final Reader in, final Writer out, final Mapper mapper) throws Exception {
handle(in, out, new RecordProcessor() {
public void processNext(RecordReader reader, Output output) throws Exception {
mapper.map(reader.next(), output);
}
});
}
public void reduce(final InputStream in, final OutputStream out,
final Reducer reducer) throws Exception {
reduce(new InputStreamReader(in), new OutputStreamWriter(out), reducer);
}
public void reduce(final Reader in, final Writer out, final Reducer reducer) throws Exception {
handle(in, out, new RecordProcessor() {
public void processNext(RecordReader reader, Output output) throws Exception {
reducer.reduce(reader.peek()[0], new KeyRecordIterator(
reader.peek()[0], reader), output);
}
});
}
private void handle(final Reader in, final Writer out,
final RecordProcessor processor) throws Exception {
final RecordReader reader = new RecordReader(in);
final OutputStreamOutput output = new OutputStreamOutput(out);
try {
while (reader.hasNext()) {
processor.processNext(reader, output);
}
} finally {
try {
output.close();
} finally {
reader.close();
}
}
}
private static interface RecordProcessor {
void processNext(final RecordReader reader, final Output output) throws Exception;
}
private static final class KeyRecordIterator implements Iterator<String[]> {
private final String key;
private final RecordReader reader;
private KeyRecordIterator(final String key, final RecordReader reader) {
this.key = key;
this.reader = reader;
}
public boolean hasNext() {
return (reader.hasNext() && key.equals(reader.peek()[0]));
}
public String[] next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
return reader.next();
}
public void remove() {
throw new UnsupportedOperationException();
}
}
private static final class RecordReader {
private final BufferedReader reader;
private String[] next;
private RecordReader(final InputStream in) {
this(new InputStreamReader(in));
}
private RecordReader(final Reader in) {
reader = new BufferedReader(in);
next = readNext();
}
private String[] next() {
final String[] ret = next;
next = readNext();
return ret;
}
private String[] readNext() {
try {
final String line = reader.readLine();
return (line == null ? null : line.split("\t"));
} catch (final Exception e) {
throw new RuntimeException(e);
}
}
private boolean hasNext() {
return next != null;
}
private String[] peek() {
return next;
}
private void close() throws Exception {
reader.close();
}
}
private static final class OutputStreamOutput implements Output {
private final PrintWriter out;
private OutputStreamOutput(final OutputStream out) {
this(new OutputStreamWriter(out));
}
private OutputStreamOutput(final Writer out) {
this.out = new PrintWriter(out);
}
public void close() throws Exception {
out.close();
}
public void collect(String[] record) throws Exception {
out.println(_join(record, "\t"));
}
private static String _join(final String[] record, final String separator) {
if (record == null || record.length == 0) {
return "";
}
final StringBuilder sb = new StringBuilder();
for (int i = 0; i < record.length; i++) {
if (i > 0) {
sb.append(separator);
}
sb.append(record[i]);
}
return sb.toString();
}
}
}
重点:
常规的mapreducer的reducer输入依赖于mapper的输出的,所以无法单独执行。但是GenericMR的实现reducer里可以直接支持InputStream/Reader,所以就可以直接生成java的指定输入流或者reader即可。
new GenericMR().reduce(new StringReader("a\tb\tc"), new StringWriter(),
new Reducer() {
public void reduce(String key, Iterator<String[]> records,
Output output) throws Exception {
while (true) {
records.next();
}
}
});
这个问题确实很另类,浪尖估计是被面试者简历写了精通hive源码,才被大佬由此一问。要不正常使用者,不会注意到这个框架。
不过这个也给大家提个醒,关注框架使用的同时,也要关注框架的历史及发展。
总结一下就是:hive野心很大,不想仅仅限于hql,想提供一个单独的可以用java编写的hive自己的map/reduce计算框架。
欢迎关注浪尖,留言更多比较有趣的问题哦!