为什么各大厂自研的内存泄漏检测框架都要参考 LeakCanary?因为它是真的强!

共 87264字,需浏览 175分钟

 ·

2022-11-18 15:10

 安卓进阶涨薪训练营,让一部分人先进大厂


大家好,我是皇叔,最近开了一个安卓进阶涨薪训练营,可以帮助大家突破技术&职场瓶颈,从而度过难关,进入心仪的公司。


详情见文章:没错!皇叔开了个训练营

前言

LeakCanary 是我们非常熟悉内存泄漏检测工具,它能够帮助开发者非常高效便捷地检测 Android 中常见的内存泄漏。在各大厂自研的内存泄漏检测框架(如腾讯 Matrix 和快手 Koom)的帮助文档中,也会引述 LeakCanary 原理分析。

不吹不黑,LeakCanary 源码中除了实现内存泄漏的监控方案外,还有非常多值得学习的编程技巧,只有沉下心去阅读的人才能够真正体会到。在这篇文章里,我将带你从入门开始掌握 LeakCanary 的使用场景以及使用方法,再介绍 LeakCanary 的工作流程和高级用法,最后通过源码解析深入理解原理。本文示例程序已上传到 Github: DemoHall · HelloLeakCanary[2] ,有用请给 Star 支持,谢谢。

提示: 本文源码分析基于 2022 年 4 月发布的 LeakCanary 2.9.1。


本文原理分析涉及的 Java 虚拟机内存管理基础:

  • 1、垃圾回收机制
  • 2、引用机制:说一下 Java 的四种引用类型[3]
  • 3、Finalizer 机制:为什么 finalize() 方法只会执行一次[4]

本文源码分析涉及的 Android 原理基础:

  • 1、Jetpack · App Startup:轻量级初始化框架[5]
  • 2、Jetpack · Fragment:模块化的微型 Activity[6]
  • 3、Jetpack · ViewModet:数据驱动型界面控制器[7]
  • 4、Framework · ContentProvider 启动过程分析[8]
  • 5、Framework · Activity 启动过程分析
  • 6、Framework · Service 启动过程分析

学习路线图:


1. 认识 LeakCanary

1.1 什么是内存泄漏?

内存泄露(Memory Leaks)指不再使用的对象或数据没有被回收,随着内存泄漏的堆积,应用性能会逐渐变差,甚至发生 OOM  奔溃。在 Android 应用中的内存泄漏可以分为 2 类:

  • Java 内存泄露: 不再使用的对象被生命周期更长的 GC Root 引用,无法被判定为垃圾对象而导致内存泄漏(LeakCanary 只能监控 Java 内存泄漏);
  • Native 内存泄露: Native 内存没有垃圾回收机制,未手动回收导致内存泄漏。

1.2 为什么要使用 LeakCanary?

LeakCanray 是 Square 开源的 Java 内存泄漏分析工具,用于在实验室阶段检测 Android 应用中常见中的内存泄漏。

LeakCanary 的特点或优势在于提前预判出 Android 应用中最常见且影响较大的内存泄漏场景,并对此做针对性的监测手段。 这使得 LeakCanary 相比于其他排查内存泄漏的方案(如分析 OOM 异常时的堆栈日志、MAT 分析工具)更加高效。因为当内存泄漏堆积而内存不足时,应用可能从任何一次无关紧要的内存分配中抛出 OOM,堆栈日志只能体现最后一次内存分配的堆栈信息,而无法体现出导致发生 OOM 的主要原因。

目前,LeakCanary 支持以下五种 Android 场景中的内存泄漏监测:

  • 1、已销毁的 Activity 对象(进入 DESTROYED 状态);
  • 2、已销毁的 Fragment 对象和 Fragment View 对象(进入 DESTROYED 状态);
  • 3、已清除的的 ViewModel 对象(进入 CLEARED 状态);
  • 4、已销毁的的 Service 对象(进入 DESTROYED 状态);
  • 5、已从 WindowManager 中移除的 RootView 对象;

1.3 LeakCanary 怎么实现内存泄漏监控?

LeakCanary 通过以下 2 点实现内存泄漏监控:

  • 1、在 Android Framework 中注册无用对象监听: 通过全局监听器或者 Hook 的方式,在 Android Framework 上监听 Activity 和 Service 等对象进入无用状态的时机(例如在 Activity#onDestroy() 后,产生一个无用 Activity 对象);
  • 2、利用引用对象可感知对象垃圾回收的机制判定内存泄漏: 为无用对象包装弱引用,并在一段时间后(默认为五秒)观察弱引用是否如期进入关联的引用队列,是则说明未发生泄漏,否则说明发生泄漏(无用对象被强引用持有,导致无法回收,即泄漏)。

详细的源码分析下文内容。


2. 理解 LeakCanary 的工作流程

虽然 LeakCanary 的使用方法非常简单,但是并不意味着 LeakCanary 的工作流程也非常简单。在了解 LeakCanary 的使用方法和深入 LeakCanary 的源码之前,我们先理解 LeakCanary 的核心工作流程,我将其概括为以下 5 个阶段:

  • 1、注册无用对象监听: 在 Android Framework 中注册监听器,感知五种 Android 内存泄漏场景中产生无用对象的时机(例如在 Activity#onDestroy() 后,产生一个无用 Activity 对象);
  • 2、监控内存泄漏: 为无用对象关联弱引用对象,如果一段时间后引用对象没有按预期进入引用队列,则认为对象发生内存泄漏。由于分析堆快照是耗时工作,所以 LeakCanary 不会每次发现内存泄漏对象都进行分析工作,而是内存泄漏对象计数到达阈值才会触发分析工作。在计数未到达阈值的过程中,LeakCanary 会发送一条系统通知,你也可以点击该通知提前触发分析工作;

收集过程中的系统通知消息

提示: LeakCanary 为不同的 App 状态设置了不同默认阈值:App 可见时阈值为 5 个泄漏对象,App 不可见时阈值为 1 个泄漏对象。举个例子,如果 App 在前台可见并且已经收集了 4 个泄漏的对象,此时 App 退到后台,LeakCanary 会在五秒后触发分析工作。

  • 3、Java Heap Dump: 当泄漏对象计数达到阈值时,会触发 Java Heap Dump 并生成 .hprof 文件存储到文件系统中。Heap Dump 的过程中会锁堆,会使应用冻结一段时间;

Heap Dump 过程中的全局对话框

  • 4、分析堆快照: LeakCanary 会根据应用的依赖项,选择 WorkManager 多进程、WorkManager 异步任务或 Thread 异步任务其中一种策略来执行分析(例如,LeakCanary 会检查应用有 leakcanary-android-process 依赖项,才会使用 WorkManager 多进程策略)。分析过程 LeakCanary 使用 Shark 分析 .hprof 文件,替换了 LeakCanary 1.0 使用的 haha ;
  • 5、输出分析报告: 当分析工作完成后,LeakCanary 会在 Logcat 打印分析结果,也会发送一条系统通知消息。点击通知消息可以跳转到可视化分析报告页面,也可以点击 LeakCanary 生成的桌面快捷方式进入。

分析结束后的系统通知消息

新增的启动图标

可视化分析报告

至此,LeakCanary 一次内存泄漏分析工作流程执行完毕。


3. LeakCanary 的基本用法

这一节,我们来介绍 LeakCanary 的基础用法。

3.1 将 LeakCanary 添加到项目中

在 build.gradle 中添加 LeakCanary 依赖,此外不需要调用任何初始化 API(LeakCanary 内部默认使用了 ContentProvider 实现无侵入初始化)。另外,因为 LeakCanary 是只在实验室环境使用的工具,所以这里要记得使用 debugImplementation 依赖配置。

build.gradle

dependencies {
    // debugImplementation because LeakCanary should only run in debug builds.
    debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.9.1'
}

3.2 手动初始化 LeakCanary

LeakCanary 2.0 默认采用了 ContentProvider 机制实现了无侵入初始化,为了给予开发者手动初始化 LeakCanary 的可能性,LeakCanary 在 ContentProvider 中设置了布尔值开关:

AndroidManifest.xml

<application>
    <provider
        android:name="leakcanary.internal.MainProcessAppWatcherInstaller"
        android:authorities="${applicationId}.leakcanary-installer"
        android:enabled="@bool/leak_canary_watcher_auto_install"
        android:exported="false"/>

</application>

开发者只需要在资源文件里覆写 @bool/eak_canary_watcher_auto_install 布尔值来关闭自动初始化,并在合适的时机手动调用 AppWatcher#manualInstall 。

values.xml

<resources>
    <bool name="leak_canary_watcher_auto_install">false</bool>
</resources>

3.3 自定义 LeakCanary 配置

LeakCanary 为开发者提供了便捷的配置 API,并且这个配置 API 在初始化前后都允许调用。

示例程序

// Java 语法
LeakCanary.Config config = LeakCanary.getConfig().newBuilder()
    .retainedVisibleThreshold(3)
    .build();
LeakCanary.setConfig(config);
// Kotlin 语法
LeakCanary.config = LeakCanary.config.copy(
    retainedVisibleThreshold = 3
)

以下用一个表格总结 LeakCanary 主要的配置项:

配置项描述默认值
dumpHeap: BooleanHeap Dump 分析开关true
dumpHeapWhenDebugging: Boolean调试时 Heap Dump 分析开关false
retainedVisibleThreshold: IntApp 可见时泄漏计数阈值5
objectInspectors: List对象检索器AndroidObjectInspectors.appDefaults
computeRetainedHeapSize: Boolean是否计算泄漏内存空间true
maxStoredHeapDumps: Int最大堆快照存储数量7
requestWriteExternalStoragePermission: Boolean是否请求文件存储权限true
leakingObjectFinder: LeakingObjectFinder引用链分析器KeyedWeakReferenceFinder
heapDumper: HeapDumperHeap Dump 执行器Debug.dumpHprofData
eventListeners: List事件监听器多个内部监听器

4. 解读 LeakCanary 分析报告

内存泄漏分析报告是 LeakCanary 所有监控和分析工作后输出的目标产物,要根据修复内存泄漏,首先就要求开发者能够读懂 LeakCanary 的分析报告。我将 LeakCanary 的分析报告总结为以下 4 个要点:

4.1 泄漏对象的引用链

泄漏对象的引用链是分析报告的核心信息,LeakCanary 会收集泄漏对象到 GC Root 的完整引用链信息。例如,以下示例程序在 static 变量中持有一个 Helper 对象,当 Helper 被期望被垃圾回收时用 AppWatcher 监测该对象,如果未按预期被回收,则会输出以下分析报告:

示例程序

class Helper {
}

class Utils {
    public static Helper helper = new Helper();
}

// Helper 无用后监测
AppWatcher.objectWatcher.watch(helper, "Helper is no longer useful")

Logcat 日志

┬───
│ GC Root: Local variable in native code

├─ dalvik.system.PathClassLoader instance
│    ↓ PathClassLoader.runtimeInternalObjects // 表示 PathClassLoader 中的 runtimeInternalObjects 字段,它是一个 Object 数组
├─ java.lang.Object[] array
│    ↓ Object[].[43] // 表示 Object 数组的第 43 位,它是一个 Utils 类型引用
├─ com.example.Utils class
│    ↓ static Utils.helper // 表示 Utils 的 static 字段,它是一个 Helper 类型引用
╰→ java.example.Helper

解释一下其中的符号:

  •  代表一个 Java 对象;
  • │ ↓ 代表一个 Java 引用,关联的实际对象在下一行;
  • ╰→ 代表泄漏的对象,即 AppWatcher.objectWatcher.watch() 直接监控的对象。

4.2 按引用链签名分组

用减少重复的排查工作,LeakCanary 会将相同问题重复触发的内存泄漏进行分组,分组方法是按引用链的签名。引用链签名是对引用链上经过的每个对象的类型拼接后取哈希值,既然应用链完全相同,就没必要重复排查了。

例如,对于泄漏对象 instance,对应的泄漏签名计算公式如下:

Logcat 日志

...
│  
├─ com.example.leakcanary.LeakingSingleton class
│    Leaking: NO (a class is never leaking)
│    ↓ static LeakingSingleton.leakedViews
│                              ~~~~~~~~~~~
├─ java.util.ArrayList instance
│    Leaking: UNKNOWN
│    ↓ ArrayList.elementData
│                ~~~~~~~~~~~
├─ java.lang.Object[] array
│    Leaking: UNKNOWN
│    ↓ Object[].[0]
│               ~~~
├─ android.widget.TextView instance
│    Leaking: YES (View.mContext references a destroyed activity)

对应的签名计算公式

val leakSignature = sha1Hash(
    "com.example.leakcanary.LeakingSingleton.leakedView" +
    "java.util.ArrayList.elementData" +
    "java.lang.Object[].[x]"
)
println(leakSignature)
// dbfa277d7e5624792e8b60bc950cd164190a11aa

4.3 使用 ~~~ 标记怀疑对象

为了提高排查内存泄漏的效率,LeakCanary 会自动帮助我们根据对象的生命周期信息或状态信息缩小排查范围,排除原本就具有全局生命周期的对象,剩下的用 ~~~ 下划线标记为怀疑对象。

例如,在以下内存泄漏报告中,ExampleApplication 对象被 FontsContract.sContext 静态变量持有,表面看起来是 sContext 静态变量导致内存泄漏。其实不是,因为 ExampleApplication 的生命周期是全局的且永远不会被垃圾回收的,所以内存泄漏的根本原因一定不是因为 sContext 持有 ExampleApplication 引起的,sContext 这条引用可以排除,所以它不会用 ~~~ 下划线标记。

4.4 按 Application Leaks 和 Library Leaks 分类

为了提高排查内存泄漏的效率,LeakCanary 会自动将泄漏报告划分为 2 类:

  • Application Leaks: 应用层代码产生的内存泄漏,包括项目代码和第三方库代码;
  • Library Leaks: Android Framework 产生的内存泄漏,开发者几乎无法做什么,可以忽略。

其实,Library Leaks 这个名词起得并不好,应该叫作 Framework Leaks。 小彭最初在阅读官方文档后,以为 Library Leaks 是只第三方库代码产生的内存泄漏,LeakCanary 还提到开发者对于 Library Leaks 几乎无法做什么,让我一度很好奇 LeakCanary 是如何定义二方库和三方库。最后还是通过源码才得知,Library Leaks 原来是指 Android Framework 中产生的内存泄漏,例如什么 TextView、InputMethodManager 之类的。

Logcat 中的 Library Leak 标记

====================================
HEAP ANALYSIS RESULT
====================================
0 APPLICATION LEAKS

====================================
1 LIBRARY LEAK

...
┬───
│ GC Root: Local variable in native code

...

可视化分析报告中的 Library Leak 标记


5. LeakCanary 的进阶用法

5.1 使用 App Startup 初始化 LeakCanary

LeakCanary 2.8 提供了对 Jetpack · App Startup 的支持。如果想使用 App Startup 初始化 LeakCanary,只需要替换为另一个依赖。不过,毕竟 LeakCanary 是主要在实验室环境使用的工具,这个优化的意义并不大。

build.gradle

dependencies {
    // 替换为另一个依赖
    // debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.9.1'
    debugImplementation 'com.squareup.leakcanary:leakcanary-android-startup:2.9.1'
}

对应的 App Startup 启动器源码:

AppWatcherStartupInitializer.kt

internal class AppWatcherStartupInitializer : Initializer<AppWatcherStartupInitializer{
    override fun create(context: Context) = apply {
        val application = context.applicationContext as Application
        AppWatcher.manualInstall(application)
    }
    override fun dependencies() = emptyList<Class<out Initializer<*>>>()
}

5.2 在子进程执行 LeakCanary 分析工作

由于 LeakCanary 分析堆快照的过程存在一定的内存消耗,整个分析过程一般会持续几十秒,对于一些性能差的机型会造成明显的卡顿甚至 ANR。为了优化内存占用和卡顿问题,LeakCanary 2.8 提供了对多进程的支持。开发者只需要依赖 LeakCanary 的多进程依赖项,LeakCanary 会自动将分析工作转移到子进程中(基于 androidX.work.multiprocess):

build.gradle

dependencies {
    // 官方文档对多进程功能的介绍有矛盾,经过测试,以下两个依赖都需要
    debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.9.1'
    debugImplementation 'com.squareup.leakcanary:leakcanary-android-process:2.9.1'
}

同时,开发者需要在自定义 Application 中检查当前进程信息,避免在 LeakCanary 的子进程中执行不必要的初始化操作:

ExampleApplication.kt

class ExampleApplication : Application() {
    override fun onCreate() {
        if (LeakCanaryProcess.isInAnalyzerProcess(this)) {
            return
        }
        super.onCreate()
        // normal init goes here, skipped in :leakcanary process.
    }
}

Logcat 进程选项

Logcat 日志

LeakCanary: Enqueuing heap analysis for /storage/emulated/0/Download/leakcanary-com.pengxr.helloleakcanary/2022-08-22_19-54-24_331.hprof on WorkManager remote worker

5.3 使用快手 Koom 加快 Dump 速度

LeakCanary 默认的 Java Heap Dump 使用的是 Debug.dumpHprofData() ,在 Dump 的过程中会有较长时间的应用冻结时间。 快手技术团队在开源框架 Koom 中提出了优化方案:利用 Copy-on-Write 思想,fork 子进程再进行 Heap Dump 操作。

LeakCanary 配置项可以修改 Heap Dump 执行器,示例程序如下:

示例程序

// 依赖: 
debugImplementation "com.kuaishou.koom:koom-java-leak:2.2.0"

// 使用默认配置初始化 Koom
DefaultInitTask.init(application)
// 自定义 LeakCanary 配置
LeakCanary.config = LeakCanary.config.copy(
    // 自定义 Heap Dump 执行器
    heapDumper = {
        ForkJvmHeapDumper.getInstance().dump(it.absolutePath)
    }
)

Logcat 日志对比

// 使用默认的 Debug.dumpHprofData() 的日志
helloleakcanar: hprof: heap dump "/storage/emulated/0/Download/leakcanary-com.pengxr.helloleakcanary/2022-08-22_18-47-28_674.hprof" starting...
helloleakcanar: hprof: heap dump completed (34MB) in 1.552s objects 549530 objects with stack traces 0
LeakCanary: Enqueuing heap analysis for /storage/emulated/0/Download/leakcanary-com.pengxr.helloleakcanary/2022-08-22_19-58-13_310.hprof on WorkManager remote worker
...

// 使用快手 Koom Heap Dump 的日志
OOMMonitor_ForkJvmHeapDumper: dump /storage/emulated/0/Download/leakcanary-com.pengxr.helloleakcanary/2022-08-22_19-54-24_331.hprof
OOMMonitor_ForkJvmHeapDumper: before suspend and fork.
OOMMonitor_ForkJvmHeapDumper: dump true, notify from pid 8567
LeakCanary: Enqueuing heap analysis for /storage/emulated/0/Download/leakcanary-com.pengxr.helloleakcanary/2022-08-22_19-54-24_331.hprof on WorkManager remote worker
...

看一眼 Koom 源码:

ForkJvmHeapDumper.java

public synchronized boolean dump(String path) {
    boolean dumpRes = false;
    int pid = suspendAndFork();
    if (pid == 0) {
        // Child process
        Debug.dumpHprofData(path);
        exitProcess();
    } else if (pid > 0) {
        // Parent process
        dumpRes = resumeAndWait(pid);
    }
    return dumpRes;
}

private native void nativeInit();
private native int suspendAndFork();
private native boolean resumeAndWait(int pid);
private native void exitProcess();

5.4 自定义标记引用信息

LeakCanary 配置项可以自定义 ObjectInspector 对象检索器,在引用链上的节点中标记必要的信息和状态。标记信息会显示在分析报告中,并且会影响报告中的提示。

  • notLeakingReasons 标记: 标记非泄漏原因后,节点为 NOT_LEAKING 状态,并在分析报告中会显示 Leaking: NO (notLeakingReasons) ;
  • leakingReasons 标记: 标记泄漏原因后,节点为 LEAKING 状态,在分析报告中会显示 Leaking: YES (leakingReasons) ;
  • 缺省: 节点为 UNKNOWN 状态,在分析报告中会显示 Leaking: UNKNOWN 。

示例程序如下:

示例程序

// 自定义 LeakCanary 配置
LeakCanary.config = LeakCanary.config.copy(
    // 自定义对象检索器
    objectInspectors = LeakCanary.config.objectInspectors + ObjectInspector { reporter ->
        // reporter.notLeakingReasons += "非泄漏原因"
        // reporter.leakingReasons += "泄漏原因"
    } + AppSingletonInspector(
        // 标记全局类的类名即可
    )
)

另外,引用链 LEAKING 节点以后到第一个 NOT_LEAKING 节点中间的节点,才会用 ~~~ 下划线标记为怀疑对象。例如:


6. LeakCanary 实现原理分析

使用一张示意图表示 LeakCanary 的基本架构:

6.1 LeakCanary 如何实现自动初始化?

旧版本的 LeakCanary 需要在 Application 中调用相关初始化 API,而在 LeakCanary v2 版本中却不再需要手动初始化,为什么呢?—— 这是因为 LeakCanary 利用了 ContentProvider 的初始化机制来间接调用初始化 API。

ContentProvider 的常规用法是提供内容服务,而另一个特殊的用法是提供无侵入的初始化机制,这在第三方库中很常见,Jetpack 中提供的轻量级初始化框架 App Startup[9] 也是基于 ContentProvider 的方案。

MainProcessAppWatcherInstaller.kt

internal class MainProcessAppWatcherInstaller : ContentProvider() {
    override fun onCreate()Boolean {
        // 初始化 LeakCanary
        val application = context!!.applicationContext as Application
        AppWatcher.manualInstall(application)
        return true
    }
    ...
}

6.2 LeakCanary 初始化过程分析

LeakCanary 的初始化工程可以概括为 2 项内容:

  • 1、初始化 LeakCanary 内部分析引擎;
  • 2、在 Android Framework 上注册五种 Android 泄漏场景的监控。

AppWathcer.kt

// LeakCanary 初始化 API
@JvmOverloads
fun manualInstall(
    application: Application,
    retainedDelayMillis: Long = TimeUnit.SECONDS.toMillis(5)
,
    watchersToInstall: List<InstallableWatcher> = appDefaultWatchers(application)
) {
    checkMainThread()
    ...
    // 初始化 InternalLeakCanary 内部引擎 (已简化为等价代码,后文会提到)
    InternalLeakCanary(application)
    // 注册五种 Android 泄漏场景的监控 Hook 点
    watchersToInstall.forEach {
        it.install()
    }
}

fun appDefaultWatchers(
    application: Application,
    reachabilityWatcher: ReachabilityWatcher = objectWatcher
)
: List<InstallableWatcher> {
    // 对应 5 种 Android 泄漏场景(后文具体分析)
    return listOf(
        ActivityWatcher(application, reachabilityWatcher),
        FragmentAndViewModelWatcher(application, reachabilityWatcher),
        RootViewWatcher(reachabilityWatcher),
        ServiceWatcher(reachabilityWatcher)
    )
}

下面展开具体分析:


初始化内容 1 - 初始化 LeakCanary 内部分析引擎: 创建 HeapDumpTrigger 触发器,并在 Android Framework 上注册前后台切换监听、前台 Activity 监听和 ObjectWatcher 的泄漏监听。

InternalLeakCanary.kt

override fun invoke(application: Application) {
    _application = application

    // 1. 检查是否运行在 debug 构建变体,否则抛出异常
    checkRunningInDebuggableBuild()

    // 2. 注册泄漏回调,在 ObjectWathcer 判定对象发生泄漏会后回调 onObjectRetained() 方法
    AppWatcher.objectWatcher.addOnObjectRetainedListener(this)

    // 3. 垃圾回收触发器(用于调用 Runtime.getRuntime().gc())
    val gcTrigger = GcTrigger.Default
    // 4. 配置提供器
    val configProvider = { LeakCanary.config }
    // 5. (主角) 创建 HeapDump 触发器
    heapDumpTrigger = HeapDumpTrigger(...)

    // 6. App 前后台切换监听
    application.registerVisibilityListener { applicationVisible ->
        this.applicationVisible = applicationVisible
        heapDumpTrigger.onApplicationVisibilityChanged(applicationVisible)
    }
    // 7. 前台 Activity 监听(用于发送 Heap Dump 进行中的全局 Toast)
    registerResumedActivityListener(application)

    // 8. 增加可视化分析报告的桌面快捷入口
    addDynamicShortcut(application)
}

override fun onObjectRetained() = scheduleRetainedObjectCheck()

fun scheduleRetainedObjectCheck() {
    heapDumpTrigger.scheduleRetainedObjectCheck()
}

HeapDumpTrigger.kt

// App 前后台切换状态变化回调
fun onApplicationVisibilityChanged(applicationVisible: Boolean) {
    if (applicationVisible) {
        // App 可见
        applicationInvisibleAt = -1L
    } else {
        // App 不可见
        applicationInvisibleAt = SystemClock.uptimeMillis()
        scheduleRetainedObjectCheck(delayMillis = AppWatcher.retainedDelayMillis)
    } 
}

fun scheduleRetainedObjectCheck(delayMillis: Long = 0L) {
    // 已简化:源码此处使用时间戳拦截,避免重复 postDelayed
    backgroundHandler.postDelayed({
        checkScheduledAt = 0
        checkRetainedObjects()
    }, delayMillis)
}

初始化内容 2 - 在 Android Framework 中注入对五种 Android 泄漏场景的监控: 实现在对象的使用生命周期结束后,自动将对象交给 ObjectWatcher 进行监控。

以下为 5 种 Android 泄漏场景的监控原理分析:

  • 1、Activity 监控: 通过 Application#registerActivityLifecycleCallbacks(…) 接口监听 Activity#onDestroy 事件,将当前 Activity 对象交给 ObjectWatcher 监控;

ActivityWatcher.kt

private val lifecycleCallbacks = object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
    override fun onActivityDestroyed(activity: Activity) {
        // reachabilityWatcher 即 ObjectWatcher
        reachabilityWatcher.expectWeaklyReachable(activity /*被监控对象*/"${activity::class.java.name} received Activity#onDestroy() callback")
    }
}
  • 2、Fragment 与 Fragment View 监控: 通过 FragmentAndViewModelWatcher 实现,首先是通过 Application#registerActivityLifecycleCallbacks(…) 接口监听 Activity#onCreate 事件,再通过 FragmentManager#registerFragmentLifecycleCallbacks(…) 接口监听 Fragment 的生命周期:

FragmentAndViewModelWatcher.kt

// fragmentDestroyWatchers 是一个 Lambda 表达式数组
// 对应原生、AndroidX 和 Support 三个版本 Fragment 的 Hook 工具
private val fragmentDestroyWatchers: List<(Activity) -> Unit> = 略...

private val lifecycleCallbacks = object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
    override fun onActivityCreated(activity: Activity, savedInstanceState: Bundle?) {
        for (watcher in fragmentDestroyWatchers) {
            // 最终调用到下文的 invokde() 方法
            watcher(activity)
        }
    }
}

以 AndroidX Fragment 为例:

AndroidXFragmentDestroyWatcher.kt

override fun invoke(activity: Activity) {
    // 这里在 Activity#onCreate 状态执行:
    if (activity is FragmentActivity) {
        val supportFragmentManager = activity.supportFragmentManager
        // 注册 Fragment 生命周期监听
        supportFragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true)
        // 注册 Activity 级别 ViewModel Hook
        ViewModelClearedWatcher.install(activity, reachabilityWatcher)
    }
}

private val fragmentLifecycleCallbacks = object : FragmentManager.FragmentLifecycleCallbacks() {

    override fun onFragmentCreated(fm: FragmentManager, fragment: Fragment, savedInstanceState: Bundle?) {
        // 注册 Fragment 级别 ViewModel Hook
        ViewModelClearedWatcher.install(fragment, reachabilityWatcher)
    }

    override fun onFragmentViewDestroyed(fm: FragmentManager, fragment: Fragment) {
        // reachabilityWatcher 即 ObjectWatcher
        reachabilityWatcher.expectWeaklyReachable(fragment.view /*被监控对象*/"${fragment::class.java.name} received Fragment#onDestroyView() callback " + "(references to its views should be cleared to prevent leaks)")
    }

    override fun onFragmentDestroyed(fm: FragmentManager, fragment: Fragment) {
        // reachabilityWatcher 即 ObjectWatcher
        reachabilityWatcher.expectWeaklyReachable(fragment /*被监控对象*/"${fragment::class.java.name} received Fragment#onDestroy() callback")
    }
}
  • 3、ViewModel 监控: 由于 Android Framework 未提供设置 ViewModel#onClear() 全局监听的方法,所以 LeakCanary 是通过 Hook 的方式实现。即:在 Activity#onCreate 和 Fragment#onCreate 事件中实例化一个自定义ViewModel,在进入 ViewModel#onClear() 方法时,通过反射获取当前作用域中所有的 ViewModel 对象交给 ObjectWatcher 监控。

ViewModelClearedWatcher.kt

// ViewModel 的子类
internal class ViewModelClearedWatcher(
    storeOwner: ViewModelStoreOwner,
    private val reachabilityWatcher: ReachabilityWatcher
) : ViewModel() {

    // 反射获取 ViewModelStore 中的 ViewModel 映射表,即可获取当前作用域所有 ViewModel 对象
    private val viewModelMap: Map<String, ViewModel>? = try {
        val mMapField = ViewModelStore::class.java.getDeclaredField("mMap")
        mMapField.isAccessible = true
        mMapField[storeOwner.viewModelStore] as Map<String, ViewModel>
    } catch (ignored: Exception) {
        null
    }

    override fun onCleared() {
        // 遍历当前作用域所有 ViewModel 对象
        viewModelMap?.values?.forEach { viewModel ->
            // reachabilityWatcher 即 ObjectWatcher
            reachabilityWatcher.expectWeaklyReachable(viewModel /*被监控对象*/"${viewModel::class.java.name} received ViewModel#onCleared() callback")
        }
    }

    companion object {
        // 直接在 storeOwner 作用域实例化 ViewModelClearedWatcher 对象
        fun install(storeOwner: ViewModelStoreOwner, reachabilityWatcher: ReachabilityWatcher) {
            val provider = ViewModelProvider(storeOwner, object : Factory {
                override fun <T : ViewModel?> create(modelClass: Class<T>): T =
                    ViewModelClearedWatcher(storeOwner, reachabilityWatcher) as T
            })
            provider.get(ViewModelClearedWatcher::class.java)
        }
    }
}
  • 4、Service 监控: 由于 Android Framework 未提供设置 Service#onDestroy() 全局监听的方法,所以 LeakCanary 是通过 Hook 的方式实现的。

Service 监控这部分源码比较复杂了,需要通过 2 步 Hook 来实现:

  • 1、Hook 主线程消息循环的 mH.mCallback 回调,监听其中的 STOP_SERVICE 消息,将即将 Destroy 的 Service 对象暂存起来(由于 ActivityThread.H 中没有 DESTROY_SERVICE 消息,所以不能直接监听到 onDestroy() 事件,需要第 2 步);
  • 2、使用动态代理 Hook AMS 与 App 通信的的 IActivityManager Binder 对象,代理其中的 serviceDoneExecuting() 方法,视为 Service#onDestroy() 的执行时机,拿到暂存的 Service 对象交给 ObjectWatcher 监控。

源码摘要如下:

ServiceWatcher.kt

private var uninstallActivityThreadHandlerCallback: (() -> Unit)? = null

// 暂存即将 Destroy 的 Service
private val servicesToBeDestroyed = WeakHashMap<IBinder, WeakReference<Service>>()

override fun install() {
    // 1. Hook mH.mCallback
    swapActivityThreadHandlerCallback { mCallback /*原对象*/ ->
        // uninstallActivityThreadHandlerCallback:用于取消 Hook
        uninstallActivityThreadHandlerCallback = {
            swapActivityThreadHandlerCallback {
                mCallback
            }
        }
        // 新对象(lambda 表达式的末行就是返回值)
        Handler.Callback { msg ->
            // 1.1 Service#onStop() 事件
            if (msg.what == STOP_SERVICE) {
                val key = msg.obj as IBinder
                // 1.2 activityThreadServices:反射获取 ActivityThread mServices 映射表 <IBinder, CreateServiceData>
                activityThreadServices[key]?.let {
                    // 1.3 暂存即将 Destroy 的 Service
                    servicesToBeDestroyed[token] = WeakReference(service)
                }
            }
            // 1.4 继续执行 Framework 原有逻辑
            mCallback?.handleMessage(msg) ?: false
        }
    }
    // 2. Hook AMS IActivityManager
    swapActivityManager { activityManagerInterface, activityManagerInstance /*原对象*/ ->
        // uninstallActivityManager:用于取消 Hook
        uninstallActivityManager = {
            swapActivityManager { _, _ ->
                activityManagerInstance
            }
        }
        // 新对象(lambda 表达式的末行就是返回值)
        Proxy.newProxyInstance(activityManagerInterface.classLoader, arrayOf(activityManagerInterface)) { _, method, args ->
            // 2.1 代理 serviceDoneExecuting() 方法
            if (METHOD_SERVICE_DONE_EXECUTING == method.name) {
                // 2.2 取出暂存的即将 Destroy 的 Service
                val token = args!![0as IBinder
                if (servicesToBeDestroyed.containsKey(token)) {
                    servicesToBeDestroyed.remove(token)?.also { serviceWeakReference ->
                        // 2.3 交给 ObjectWatcher 监控
                        serviceWeakReference.get()?.let { service ->
                            reachabilityWatcher.expectWeaklyReachable(service /*被监控对象*/"${service::class.java.name} received Service#onDestroy() callback")
                        }
                    }
                }
            }
            // 2.4 继续执行 Framework 原有逻辑
            method.invoke(activityManagerInstance, *args)
        }
    }
}

override fun uninstall() {
    // 关闭 mH.mCallback 的 Hook
    uninstallActivityManager?.invoke()
    uninstallActivityThreadHandlerCallback?.invoke()
    uninstallActivityManager = null
    uninstallActivityThreadHandlerCallback = null
}

// 使用反射修改 ActivityThread 的主线程消息循环的 mH.mCallback
// swap 是一个 lambda 表达式,参数为原对象,返回值为注入的新对象
private fun swapActivityThreadHandlerCallback(swap: (Handler.Callback?) -> Handler.Callback?) {
    val mHField = activityThreadClass.getDeclaredField("mH").apply { isAccessible = true }
    val mH = mHField[activityThreadInstance] as Handler

    val mCallbackField = Handler::class.java.getDeclaredField("mCallback").apply { isAccessible = true }
    val mCallback = mCallbackField[mH] as Handler.Callback?
    // 将 swap 的返回值作为新对象,实现 Hook
    mCallbackField[mH] = swap(mCallback)
}

// 使用反射修改 AMS 与 App 通信的 IActivityManager Binder 对象
// swap 是一个 lambda 表达式,参数为 IActivityManager 的 Class 对象和接口原实现对象,返回值为注入的新对象
private fun swapActivityManager(swap: (Class<*>, Any) -> Any) {
    val singletonClass = Class.forName("android.util.Singleton")
    val mInstanceField = singletonClass.getDeclaredField("mInstance").apply { isAccessible = true }

    val singletonGetMethod = singletonClass.getDeclaredMethod("get")

    val (className, fieldName) = if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
        "android.app.ActivityManager" to "IActivityManagerSingleton"
    } else {
        "android.app.ActivityManagerNative" to "gDefault"
    }

    val activityManagerClass = Class.forName(className)
    val activityManagerSingletonField = activityManagerClass.getDeclaredField(fieldName).apply { isAccessible = true }
    val activityManagerSingletonInstance = activityManagerSingletonField[activityManagerClass]

    // Calling get() instead of reading from the field directly to ensure the singleton is
    // created.
    val activityManagerInstance = singletonGetMethod.invoke(activityManagerSingletonInstance)

    val iActivityManagerInterface = Class.forName("android.app.IActivityManager")
    // 将 swap 的返回值作为新对象,实现 Hook
    mInstanceField[activityManagerSingletonInstance] = swap(iActivityManagerInterface, activityManagerInstance!!)
}
  • 5、RootView 监控: 由于 Android Framework 未提供设置全局监听 RootView 从 WindowManager 中移除的方法,所以 LeakCanary 是通过 Hook 的方式实现的,这一块是通过 squareup 另一个开源库 curtains 实现的。

RootView 监控这部分源码也比较复杂了,需要通过 2 步 Hook 来实现:

  • 1、Hook WMS 服务内部的 WindowManagerGlobal.mViews RootView 列表,获取 RootView 新增和移除的时机;
  • 2、检查 View 对应的 Window 类型,如果是 Dialog 或 DreamService 等类型,则在注册 View#addOnAttachStateChangeListener() 监听,在其中的 onViewDetachedFromWindow() 回调中将 View 对象交给 ObjectWatcher 监控。

LeakCanary 源码摘要如下:

RootViewWatcher.kt

override fun install() {
    // 1. 注册 RootView 监听
    Curtains.onRootViewsChangedListeners += listener
}

private val listener = OnRootViewAddedListener { rootView ->
    val trackDetached = when(rootView.windowType) {
    PHONE_WINDOW -> {
        when (rootView.phoneWindow?.callback?.wrappedCallback) {
            // Activity 类型已经在 ActivityWatcher 中监控了,不需要重复监控
            is Activity -> false
            is Dialog -> {
                // leak_canary_watcher_watch_dismissed_dialogs:Dialog 监控开关
                val resources = rootView.context.applicationContext.resources
                resources.getBoolean(R.bool.leak_canary_watcher_watch_dismissed_dialogs)
            }
            // DreamService 屏保等
            else -> true
        }
    }
    POPUP_WINDOW -> false
    TOOLTIP, TOAST, UNKNOWN -> true
    }
    if (trackDetached) {
        // 2. 注册 View#addOnAttachStateChangeListener 监听
        rootView.addOnAttachStateChangeListener(object : OnAttachStateChangeListener {
            val watchDetachedView = Runnable {
                // 3. 交给 ObjectWatcher 监控
                reachabilityWatcher.expectWeaklyReachable(rootView /*被监控对象*/ , "${rootView::class.java.name} received View#onDetachedFromWindow() callback")
            }

            override fun onViewAttachedToWindow(v: View) {
                mainHandler.removeCallbacks(watchDetachedView)
            }

            override fun onViewDetachedFromWindow(v: View) {
                mainHandler.post(watchDetachedView)
            }
        })
    }
}

curtains 源码摘要如下:

RootViewsSpy.kt

private val delegatingViewList = object : ArrayList<View>() {
    // 重写 ArrayList#add 方法
    override fun add(element: View)Boolean {
        // 回调
        listeners.forEach { it.onRootViewsChanged(element, true) }
        return super.add(element)
    }

    // 重写 ArrayList#removeAt 方法
    override fun removeAt(index: Int): View {
        // 回调
        val removedView = super.removeAt(index)
        listeners.forEach { it.onRootViewsChanged(removedView, false) }
        return removedView
    }
}

companion object {
    fun install(): RootViewsSpy {
        return RootViewsSpy().apply {
            WindowManagerSpy.swapWindowManagerGlobalMViews { mViews /*原对象*/ ->
                // 新对象(lambda 表达式的末行就是返回值)
                delegatingViewList.apply { addAll(mViews) }
            }
        }
    }
}

WindowManageSpy.kt

// Hook WMS 服务内部的 WindowManagerGlobal.mViews RootView 列表
// swap 是一个 lambda 表达式,参数为原对象,返回值为注入的新对象
fun swapWindowManagerGlobalMViews(swap: (ArrayList<View>) -> ArrayList<View>) {
    windowManagerInstance?.let { windowManagerInstance ->
        mViewsField?.let { mViewsField ->
            val mViews = mViewsField[windowManagerInstance] as ArrayList<View>
            mViewsField[windowManagerInstance] = swap(mViews)
        }
    }
}

至此,LeakCanary 初始化完成,并且成功在 Android Framework 的各个位置安插监控,实现对 Activity 和 Service 等对象进入无用状态的监听。我们可以用一张示意图描述 LeakCanary 的部分结构:

6.3 LeakCanary 如何判定对象泄漏?

在以上步骤中,当对象的使用生命周期结束后,会交给 ObjectWatcher 监控,现在我们来具体看下它是怎么判断对象发生泄漏的。主要逻辑概括为 3 步:

  • 第 1 步: 为被监控对象 watchedObject 创建一个 KeyedWeakReference 弱引用,并存储到 <UUID, KeyedWeakReference> 的映射表中;
  • 第 2 步: postDelay 五秒后检查引用对象是否出现在引用队列中,出现在队列则说明被监控对象未发生泄漏。随后,移除映射表中未泄露的记录,更新泄漏的引用对象的 retainedUptimeMillis 字段以标记为泄漏;
  • 第 3 步: 通过回调 onObjectRetained 告知 LeakCanary 内部发生新的内存泄漏。

源码摘要如下:

AppWatcher.kt

val objectWatcher = ObjectWatcher(
    // lambda 表达式获取当前系统时间
    clock = { SystemClock.uptimeMillis() },
    // lambda 表达式实现 Executor SAM 接口
    checkRetainedExecutor = {
        mainHandler.postDelayed(it, retainedDelayMillis)
    },
    // lambda 表达式获取监控开关
    isEnabled = { true }
)

ObjectWatcher.kt

class ObjectWatcher constructor(
    private val clock: Clock,
    private val checkRetainedExecutor: Executor,
    private val isEnabled: () -> Boolean = { true }
) : ReachabilityWatcher {

    if (!isEnabled()) {
        // 监控开关
        return
    }

    // 被监控的对象映射表 <UUID,KeyedWeakReference>
    private val watchedObjects = mutableMapOf<String, KeyedWeakReference>()

    // KeyedWeakReference 关联的引用队列,用于判断对象是否泄漏
    private val queue = ReferenceQueue<Any>()

    // 1. 为 watchedObject 对象增加监控
    @Synchronized 
    override fun expectWeaklyReachable(
        watchedObject: Any,
        description: String
    )
 {
        // 1.1 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        // 1.2 新建一个 KeyedWeakReference 引用对象
        val key = UUID.randomUUID().toString()
        val watchUptimeMillis = clock.uptimeMillis()
        watchedObjects[key] = KeyedWeakReference(watchedObject, key, description, watchUptimeMillis, queue)
        // 2. 五秒后检查引用对象是否出现在引用队列中,否则判定发生泄漏
        // checkRetainedExecutor 相当于 postDelay 五秒后执行 moveToRetained() 方法
        checkRetainedExecutor.execute {
            moveToRetained(key)
        }
    }

    // 2. 五秒后检查引用对象是否出现在引用队列中,否则说明发生泄漏
    @Synchronized 
    private fun moveToRetained(key: String) {
        // 2.1 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        // 2.2 依然存在的引用对象被判定发生泄漏
        val retainedRef = watchedObjects[key]
        if (retainedRef != null) {
            retainedRef.retainedUptimeMillis = clock.uptimeMillis()
            // 3. 回调通知 LeakCanary 内部处理
            onObjectRetainedListeners.forEach { it.onObjectRetained() }
        }
    }

    // 移除未泄漏对象对应的 KeyedWeakReference
    private fun removeWeaklyReachableObjects() {
        var ref: KeyedWeakReference?
        do {
            ref = queue.poll() as KeyedWeakReference?
            if (ref != null) {
                // KeyedWeakReference 出现在引用队列中,说明未发生泄漏
                watchedObjects.remove(ref.key)
            }
        } while (ref != null)
    }

    // 4. Heap Dump 后移除所有监控时间早于 heapDumpUptimeMillis 的引用对象
    @Synchronized 
    fun clearObjectsWatchedBefore(heapDumpUptimeMillis: Long) {
        val weakRefsToRemove = watchedObjects.filter { it.value.watchUptimeMillis <= heapDumpUptimeMillis }
        weakRefsToRemove.values.forEach { it.clear() }
        watchedObjects.keys.removeAll(weakRefsToRemove.keys)
    }

    // 获取是否有内存泄漏对象
    val hasRetainedObjects: Boolean
    @Synchronized get() {
        // 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        return watchedObjects.any { it.value.retainedUptimeMillis != -1L }
    }

    // 获取内存泄漏对象计数
    val retainedObjectCount: Int
    @Synchronized get() {
        // 移除 watchedObjects 中未泄漏的引用对象
        removeWeaklyReachableObjects()
        return watchedObjects.count { it.value.retainedUptimeMillis != -1L }
    }
}

被监控对象 watchedObject 关联的弱引用对象:

KeyedWeakReference.kt

class KeyedWeakReference(
    // 被监控对象
    referent: Any,
    // 唯一 Key,根据此字段匹配映射表中的记录
    val key: String,
    // 描述信息
    val description: String,
    // 监控开始时间,即引用对象创建时间
    val watchUptimeMillis: Long,
    // 关联的引用队列
    referenceQueue: ReferenceQueue<Any>
) : WeakReference<Any>(referent, referenceQueue) {
  
    // 记录实际对象 referent 被判定为泄漏对象的时间
    // -1L 表示非泄漏对象,或者还未判定完成
    @Volatile
    var retainedUptimeMillis = -1L

    override fun clear() {
        super.clear()
        retainedUptimeMillis = -1L
    }

    companion object {
        // 记录最近一次触发 Heap Dump 的时间
        @Volatile
        @JvmStatic var heapDumpUptimeMillis = 0L
    }
}

6.4 LeakCanary 发现泄漏对象后就会触发分析吗?

ObjectWatcher 判定被监控对象发生泄漏后,会通过接口方法 OnObjectRetainedListener#onObjectRetained() 回调到 LeakCanary 内部的管理器 InternalLeakCanary 处理(在前文 AppWatcher 初始化中提到过)。LeakCanary 不会每次发现内存泄漏对象都进行分析工作,而会进行两个拦截:

  • 拦截 1:泄漏对象计数未达到阈值,或者进入后台时间未达到阈值;
  • 拦截 2:计算距离上一次 HeapDump 未超过 60s。

源码摘要如下:

InternalLeakCanary.kt

// 从 ObjectWatcher 回调过来
override fun onObjectRetained() = scheduleRetainedObjectCheck()

private lateinit var heapDumpTrigger: HeapDumpTrigger

fun scheduleRetainedObjectCheck() {
    if (this::heapDumpTrigger.isInitialized) {
        heapDumpTrigger.scheduleRetainedObjectCheck()
    }
}

HeapDumpTrigger.kt

fun scheduleRetainedObjectCheck(delayMillis: Long = 0L) {
    // 已简化:源码此处使用时间戳拦截,避免重复 postDelayed
    backgroundHandler.postDelayed({
        checkRetainedObjects()
    }, delayMillis)
}

private fun checkRetainedObjects() {
    val config = configProvider()

    // 泄漏对象计数
    var retainedReferenceCount = objectWatcher.retainedObjectCount
    if (retainedReferenceCount > 0) {
        // 主动触发 GC,并等待 100 ms
        gcTrigger.runGc()
        // 重新获取泄漏对象计数
        retainedReferenceCount = objectWatcher.retainedObjectCount
    }

    // 拦截 1:泄漏对象计数未达到阈值,或者进入后台时间未达到阈值
    if (retainedKeysCount < retainedVisibleThreshold) {
        // App 位于前台或者刚刚进入后台
        if (applicationVisible || applicationInvisibleLessThanWatchPeriod) {
            // 发送通知提醒
            showRetainedCountNotification("App visible, waiting until %d retained objects")
            // 延迟 2 秒再检查
            scheduleRetainedObjectCheck(WAIT_FOR_OBJECT_THRESHOLD_MILLIS)
            return;
        }
    }

    // 拦截 2:计算距离上一次 HeapDump 未超过 60s
    val now = SystemClock.uptimeMillis()
    val elapsedSinceLastDumpMillis = now - lastHeapDumpUptimeMillis
    if (elapsedSinceLastDumpMillis < WAIT_BETWEEN_HEAP_DUMPS_MILLIS) {
        // 发送通知提醒
        showRetainedCountNotification("Last heap dump was less than a minute ago")
        // 延迟 (60 - elapsedSinceLastDumpMillis)s 再检查
        scheduleRetainedObjectCheck(WAIT_BETWEEN_HEAP_DUMPS_MILLIS - elapsedSinceLastDumpMillis)
        return
    }
 
    // 移除通知提醒
    dismissRetainedCountNotification()
    // 触发 HeapDump(此时,应用有可能在后台)
    dumpHeap(...)
}

// 真正开始执行 Heap Dump
private fun dumpHeap(...) {
    // 1. 获取文件存储提供器
    val directoryProvider = InternalLeakCanary.createLeakDirectoryProvider(InternalLeakCanary.application)

    // 2. 创建 .hprof File 文件
    val heapDumpFile = directoryProvider.newHeapDumpFile()

    // 3. 执行 Heap Dump
    // Heap Dump 开始时间戳
    val heapDumpUptimeMillis = SystemClock.uptimeMillis()
    // heapDumper.dumpHeap:最终调用 Debug.dumpHprofData(heapDumpFile.absolutePath) 
    configProvider().heapDumper.dumpHeap(heapDumpFile)

    // 4. 清除 ObjectWatcher 中过期的监控
    objectWatcher.clearObjectsWatchedBefore(heapDumpUptimeMillis)

    // 5. 分析堆快照
    InternalLeakCanary.sendEvent(HeapDump(currentEventUniqueId!!, heapDumpFile, durationMillis, reason))
}

请求 GC 的源码可以看一眼:

GcTrigger.kt

fun interface GcTrigger {

    fun runGc()

    object Default : GcTrigger {
        override fun runGc() {
            // Runtime.gc() 相比于 System.gc() 更有可能触发 GC
            Runtime.getRuntime().gc()
            // 暂停等待 GC 
            Thread.sleep(100)
            System.runFinalization()
        }
    }
}

6.5 LeakCanary 在哪个线程分析堆快照?

在前面的工作中,LeakCanary 已经成功生成 .hprof 堆快照文件,并且发送了一个 LeakCanary 内部事件 HeapDump。那么这个事件在哪里被消费的呢?

一步步跟踪代码可以看到 LeakCanary 的配置项中设置了多个事件消费者 EventListener,其中与 HeapDump 事件有关的是 when{} 代码块中三个消费者。不过,这三个消费者并不是并存的,而是会根据 App 当前的依赖项而选择最优的执行策略:

  • 策略 1 - WorkerManager 多进程分析
  • 策略 2 - WorkManager 异步分析
  • 策略 3 - 异步线程分析(兜底策略)

LeakCanary 配置项中的事件消费者:

LeakCanary.kt

data class Config(
    val eventListeners: List<EventListener> = listOf(
        LogcatEventListener,
        ToastEventListener,
        LazyForwardingEventListener {
            if (InternalLeakCanary.formFactor == TV) TvEventListener else NotificationEventListener
        },
        when {
            // 策略 1 - WorkerManager 多进程分析
            RemoteWorkManagerHeapAnalyzer.remoteLeakCanaryServiceInClasspath ->RemoteWorkManagerHeapAnalyzer
            // 策略 2 - WorkManager 异步分析
            WorkManagerHeapAnalyzer.validWorkManagerInClasspath -> WorkManagerHeapAnalyzer
            // 策略 3 - 异步线程分析(兜底策略)
            else -> BackgroundThreadHeapAnalyzer
        }
    ),
    ...
)
  • 策略 1 - WorkerManager 多进程分析: 判断是否可以类加载 RemoteLeakCanaryWorkerService ,这个类位于前文提到的 com.squareup.leakcanary:leakcanary-android-process:2.9.1 依赖中。如果可以类加载成功则视为有依赖,使用 WorkerManager 多进程分析;

RemoteWorkManagerHeapAnalyzer.kt

object RemoteWorkManagerHeapAnalyzer : EventListener {

    // 通过类加载是否成功,判断是否存在依赖
    internal val remoteLeakCanaryServiceInClasspath by lazy {
        try {
            Class.forName("leakcanary.internal.RemoteLeakCanaryWorkerService")
            true
        } catch (ignored: Throwable) {
            false
        }
    }

    override fun onEvent(event: Event) {
        if (event is HeapDump) {
            // 创建并分发 WorkManager 多进程请求
            val heapAnalysisRequest = OneTimeWorkRequest.Builder(RemoteHeapAnalyzerWorker::class.java).apply {
                val dataBuilder = Data.Builder()
                    .putString(ARGUMENT_PACKAGE_NAME, application.packageName)
                    .putString(ARGUMENT_CLASS_NAME, REMOTE_SERVICE_CLASS_NAME)
                setInputData(event.asWorkerInputData(dataBuilder))
                with(WorkManagerHeapAnalyzer) {
                    addExpeditedFlag()
                }
            }.build()
            WorkManager.getInstance(application).enqueue(heapAnalysisRequest)
        }
    }
}

RemoteHeapAnalyzerWorker.kt

internal class RemoteHeapAnalyzerWorker(appContext: Context, workerParams: WorkerParameters) : RemoteListenableWorker(appContext, workerParams) {
    override fun startRemoteWork(): ListenableFuture<Result> {
        val heapDump = inputData.asEvent<HeapDump>()
        val result = SettableFuture.create<Result>()
        heapAnalyzerThreadHandler.post {
            // 1.1 分析堆快照
            val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(heapDump, isCanceled = {
                result.isCancelled
            }) { progressEvent ->
                // 1.2 发送分析进度事件
                if (!result.isCancelled) {
                    InternalLeakCanary.sendEvent(progressEvent)
                }
            }
            // 1.3 发送分析完成事件
            InternalLeakCanary.sendEvent(doneEvent)
            result.set(Result.success())
        }
        return result
    }
}
  • 策略 2 - WorkManager 异步分析: 判断是否可以类加载 androidx.work.WorkManager ,如果可以,则使用 WorkManager 异步分析;

WorkManagerHeapAnalyzer.kt

internal val validWorkManagerInClasspath by lazy {
    // 判断 WorkManager 依赖,代码略
}

override fun onEvent(event: Event) {
    if (event is HeapDump) {
        // 创建并分发 WorkManager 请求
        val heapAnalysisRequest = OneTimeWorkRequest.Builder(HeapAnalyzerWorker::class.java).apply {
            setInputData(event.asWorkerInputData())
            addExpeditedFlag()
        }.build()
        val application = InternalLeakCanary.application
        WorkManager.getInstance(application).enqueue(heapAnalysisRequest)
    }
}

HeapAnalyzerWorker.kt

internal class HeapAnalyzerWorker(appContext: Context, workerParams: WorkerParameters) : Worker(appContext, workerParams) {
    override fun doWork(): Result {
        // 2.1 分析堆快照
        val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(inputData.asEvent()) { event ->
            // 2.2 发送分析进度事件
            InternalLeakCanary.sendEvent(event)
        }
        // 2.3 发送分析完成事件
        InternalLeakCanary.sendEvent(doneEvent)
        return Result.success()
    }
}
  • 策略 3 - 异步线程分析(兜底策略):  如果以上策略未命中,则直接使用子线程兜底执行。

BackgroundThreadHeapAnalyzer.kt

object BackgroundThreadHeapAnalyzer : EventListener {

    // HandlerThread
    internal val heapAnalyzerThreadHandler by lazy {
        val handlerThread = HandlerThread("HeapAnalyzer")
        handlerThread.start()
        Handler(handlerThread.looper)
    }

    override fun onEvent(event: Event) {
        if (event is HeapDump) {
            // HandlerThread 请求
            heapAnalyzerThreadHandler.post {
                // 3.1 分析堆快照
                val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(event) { event ->
                    // 3.2 发送分析进度事件
                    InternalLeakCanary.sendEvent(event)
                }
                // 3.3 发送分析完成事件
                InternalLeakCanary.sendEvent(doneEvent)
            }
        }
    }
}

可以看到,不管采用那种执行策略,最终执行的逻辑都是一样的:

  • 1、分析堆快照;
  • 2、发送分析进度事件;
  • 3、发送分析完成事件。

6.5 LeakCanary 如何分析堆快照?

在前面的分析中,我们已经知道 LeakCanary 是通过子线程或者子进程执行 AndroidDebugHeapAnalyzer.runAnalysisBlocking 方法来分析堆快照的,并在分析过程中和分析完成后发送回调事件。现在我们来阅读 LeakCanary 的堆快照分析过程:

AndroidDebugHeapAnalyzer.kt

fun runAnalysisBlocking(
    heapDumped: HeapDump,
    isCanceled: () -> Boolean = { false },
    progressEventListener: (HeapAnalysisProgress) -> Unit
)
: HeapAnalysisDone<*> {
    ...
    // 1. .hprof 文件
    val heapDumpFile = heapDumped.file
    // 2. 分析堆快照
    val heapAnalysis = analyzeHeap(heapDumpFile, progressListener, isCanceled)
    val analysisDoneEvent = ScopedLeaksDb.writableDatabase(application) { db ->
    // 3. 将分析报告持久化到 DB
    val id = HeapAnalysisTable.insert(db, heapAnalysis)
    // 4. 发送分析完成事件(返回到上一级进行发送:InternalLeakCanary.sendEvent(doneEvent))
    val showIntent = LeakActivity.createSuccessIntent(application, id)
    val leakSignatures = fullHeapAnalysis.allLeaks.map { it.signature }.toSet()
    val leakSignatureStatuses = LeakTable.retrieveLeakReadStatuses(db, leakSignatures)
    val unreadLeakSignatures = leakSignatureStatuses.filter { (_, read) -> !read}.keys.toSet()
        HeapAnalysisSucceeded(heapDumped.uniqueId, fullHeapAnalysis, unreadLeakSignatures ,showIntent)
    }
    return analysisDoneEvent
}

核心分析方法是 analyzeHeap(…),继续往下走:

AndroidDebugHeapAnalyzer.kt

private fun analyzeHeap(
    heapDumpFile: File,
    progressListener: OnAnalysisProgressListener,
    isCanceled: () -> Boolean
)
: HeapAnalysis {
    ...
    // Shark 堆快照分析器
    val heapAnalyzer = HeapAnalyzer(progressListener)
    ...
    // 构建对象图信息
    val sourceProvider = ConstantMemoryMetricsDualSourceProvider(ThrowingCancelableFileSourceProvider(heapDumpFile)
    val graph = sourceProvider.openHeapGraph(proguardMapping = proguardMappingReader?.readProguardMapping())
    ...
    // 开始分析
    heapAnalyzer.analyze(
    heapDumpFile = heapDumpFile,
    graph = graph,
    leakingObjectFinder = config.leakingObjectFinder, // 默认是 KeyedWeakReferenceFinder
    referenceMatchers = config.referenceMatchers, // 默认是 AndroidReferenceMatchers
    computeRetainedHeapSize = config.computeRetainedHeapSize, // 默认是 true
    objectInspectors = config.objectInspectors, // 默认是 AndroidObjectInspectors
    metadataExtractor = config.metadataExtractor // 默认是 AndroidMetadataExtractor
    )
}

开始进入 Shark 组件:

shark.HeapAnalyzer.kt

// analyze -> analyze -> FindLeakInput.analyzeGraph
private fun FindLeakInput.analyzeGraph(
    metadataExtractor: MetadataExtractor,
    leakingObjectFinder: LeakingObjectFinder,
    heapDumpFile: File,
    analysisStartNanoTime: Long
)
: HeapAnalysisSuccess {
    ...
    // 1. 在堆快照中寻找泄漏对象,默认是寻找 KeyedWeakReference 类型对象
    // leakingObjectFinder 默认是 KeyedWeakReferenceFinder
    val leakingObjectIds = leakingObjectFinder.findLeakingObjectIds(graph)
    // 2. 分析泄漏对象的最短引用链,并按照应用链签名分类
    // applicationLeaks: Application Leaks
    // librbuildLeakTracesaryLeaks:Library Leaks
    // unreachableObjects:LeakCanary 无法分析出强引用链,可以提 Stack Overflow
    val (applicationLeaks, libraryLeaks, unreachableObjects) = findLeaks(leakingObjectIds)
    // 3. 返回分析完成事件
    return HeapAnalysisSuccess(...)
}

private fun FindLeakInput.findLeaks(leakingObjectIds: Set<Long>): LeaksAndUnreachableObjects {
    // PathFinder:引用链分析器
    val pathFinder = PathFinder(graph, listener, referenceReader, referenceMatchers)
    // pathFindingResults:完整引用链
    val pathFindingResults = pathFinder.findPathsFromGcRoots(leakingObjectIds, computeRetainedHeapSize)
    // unreachableObjects:LeakCanary 无法分析出强引用链(相当于 LeakCanary 的 Bug)
    val unreachableObjects = findUnreachableObjects(pathFindingResults, leakingObjectIds)
    // shortestPaths:最短引用链
    val shortestPaths = deduplicateShortestPaths(pathFindingResults.pathsToLeakingObjects)
    // inspectedObjectsByPath:标记信息
    val inspectedObjectsByPath = inspectObjects(shortestPaths)
    // retainedSizes:泄漏内存大小
    val retainedSizes = computeRetainedSizes(inspectedObjectsByPath, pathFindingResults.dominatorTree)
    // 生成单个泄漏问题的分析报告,并按照应用链签名分组,按照 Application Leaks 和 Library Leaks 分类,按照 Application Leaks 和 Library Leaks 分类
    // applicationLeaks: Application Leaks
    // librbuildLeakTracesaryLeaks:Library Leaks
    val (applicationLeaks, librbuildLeakTracesaryLeaks) = buildLeakTraces(shortestPaths, inspectedObjectsByPath, retainedSizes)
    return LeaksAndUnreachableObjects(applicationLeaks, libraryLeaks, unreachableObjects)
}

可以看到,堆快照分析最终是交给 Shark 中的 HeapAnalizer 完成的,核心流程是:

  • 1、在堆快照中寻找泄漏对象,默认是寻找 KeyedWeakReference 类型对象;
  • 2、分析 KeyedWeakReference 对象的最短引用链,并按照引用链签名分组,按照 Application Leaks 和 Library Leaks 分类;
  • 3、返回分析完成事件。

第 1 步和第 3 步不用说了,继续分析最复杂的第 2 步:

shark.HeapAnalyzer.kt

// 生成单个泄漏问题的分析报告,并按照应用链签名分组,按照 Application Leaks 和 Library Leaks 分类,按照 Application Leaks 和 Library Leaks 分类
private fun FindLeakInput.buildLeakTraces(
    shortestPaths: List<ShortestPath/*最短引用链*/ ,
    inspectedObjectsByPath: List<List<InspectedObject>> /*标记信息*/ ,
    retainedSizes: Map<Long, Pair<IntInt>>? /*泄漏内存大小*/
)
: Pair<List<ApplicationLeak>, List<LibraryLeak>> {
    // Application Leaks
    val applicationLeaksMap = mutableMapOf<String, MutableList<LeakTrace>>()
    // Library Leaks
    val libraryLeaksMap = mutableMapOf<String, Pair<LibraryLeakReferenceMatcher, MutableList<LeakTrace>>>()

    shortestPaths.forEachIndexed { pathIndex, shortestPath ->
        // 标记信息
        val inspectedObjects = inspectedObjectsByPath[pathIndex]
        // 实例化引用链上的每个对象快照(非怀疑对象的 leakingStatus 为 NOT_LEAKING)
        val leakTraceObjects = buildLeakTraceObjects(inspectedObjects, retainedSizes)
        val referencePath = buildReferencePath(shortestPath, leakTraceObjects)
        // 分析报告
        val leakTrace = LeakTrace(
            gcRootType = GcRootType.fromGcRoot(shortestPath.root.gcRoot),
            referencePath = referencePath,
            leakingObject = leakTraceObjects.last()
        )
        val firstLibraryLeakMatcher = shortestPath.firstLibraryLeakMatcher()
        if (firstLibraryLeakMatcher != null) {
            // Library Leaks
            val signature: String = firstLibraryLeakMatcher.pattern.toString().createSHA1Hash()
            libraryLeaksMap.getOrPut(signature) { firstLibraryLeakMatcher to mutableListOf() }.second += leakTrace
        } else {
            // Application Leaks
            applicationLeaksMap.getOrPut(leakTrace.signature) { mutableListOf() } += leakTrace
        }
    }
    val applicationLeaks = applicationLeaksMap.map { (_, leakTraces) ->
        // 实例化为 ApplicationLeak 类型
        ApplicationLeak(leakTraces)
    }
    val libraryLeaks = libraryLeaksMap.map { (_, pair) ->
        // 实例化为 LibraryLeak 类型
        val (matcher, leakTraces) = pair
        LibraryLeak(leakTraces, matcher.pattern, matcher.description)
    }
    return applicationLeaks to libraryLeaks
}

6.6 LeakCanary 如何筛选 ~~~ 怀疑对象?

LeakCanary 会使用 ObjectInspector 对象检索器在引用链上的节点中标记必要的信息和状态,标记信息会显示在分析报告中,并且会影响报告中的提示。而引用链 LEAKING 节点以后到第一个 NOT_LEAKING 节点中间的节点,才会用 ~~~ 下划线标记为怀疑对象。

在第 6.5 节中,LeakCanary 通过 leakingObjectFinder 标记引用信息,leakingObjectFinder 默认是 AndroidObjectInspectors.appDefaults ,也可以在配置项中自定义。

// inspectedObjectsByPath:筛选出非怀疑对象(分析报告中 ~~~ 标记的是怀疑对象)
val inspectedObjectsByPath = inspectObjects(shortestPaths)

看一下可视化报告中相关源码:

DisplayLeakAdapter.kt

...
val reachabilityString = when (leakingStatus) {
    UNKNOWN -> extra("UNKNOWN")
    NOT_LEAKING -> "NO" + extra(" (${leakingStatusReason})")
    LEAKING -> "YES" + extra(" (${leakingStatusReason})")
}
...

LeakTrace.kt

// 是否为怀疑对象
fun referencePathElementIsSuspect(index: Int)Boolean {
    return  when (referencePath[index].originObject.leakingStatus) {
        UNKNOWN -> true
        NOT_LEAKING -> index == referencePath.lastIndex || referencePath[index + 1].originObject.leakingStatus != NOT_LEAKING
        else -> false
    }
}

6.7 LeakCanary 分析完成后的处理

有两个位置处理了 HeapAnalysisSucceeded 事件:

  • Logcat:打印分析报告日志;
  • Notification: 发送分析成功系统通知消息。

LogcatEventListener.kt

object LogcatEventListener : EventListener {
    ...
    SharkLog.d { "\u200B\n${LeakTraceWrapper.wrap(event.heapAnalysis.toString(), 120)}" }
    ...
}

NotificationEventListener.kt

object NotificationEventListener : EventListener {
    ...
    val flags = if (Build.VERSION.SDK_INT >= 23) {
        PendingIntent.FLAG_UPDATE_CURRENT or PendingIntent.FLAG_IMMUTABLE
    } else {
        PendingIntent.FLAG_UPDATE_CURRENT
    }
    // 点击通知消息打开可视化分析报告
    val pendingIntent = PendingIntent.getActivity(appContext, 1,  event.showIntent, flags)
    showHeapAnalysisResultNotification(contentTitle,pendingIntent)
    ...
}

至此,LeakCanary 原理分析完毕。


7. 总结

到这里,LeakCanary 的使用和原理分析就讲完了。不过,LeakCanary 毕竟是实验室使用的工具,如果要实现线上内存泄漏监控,你知道怎么做吗?要实现 Native 内存泄漏监控又要怎么做?关注我,带你了解更多。


参考资料

  • LeakCanary 官网[10]
  • LeakCanary Github 仓库[11]
  • How Leakcanary leverages WorkManager multi-process[12] —— Pierre-Yves Ricau 著
  • Matrix Android ResourceCanary[13] —— 腾讯 Matrix 说明文档
  • KOOM —— 高性能线上内存监控方案[14] —— 快手 Koom 说明文档
  • 内存优化(下):内存优化这件事,应该从哪里着手?[15] —— 张绍文 著
  • Android内存泄露检测 LeakCanary 2.0 (Kotlin版) 的实现原理[16] —— vivo 技术团队 著
  • 其他参考资料见原文






为了防止失联,欢迎关注我防备的小号


 

               微信改了推送机制,真爱请星标本公号👇

浏览 46
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报