面试:说说你对 HashMap 的认识?
点击上方蓝色“程序猿DD”,选择“设为星标”
回复“资源”获取独家整理的学习资料!

1 概述
       2 HashMap的数据结构

每个位置是一个Entry的数据结构,该结构可组成链表.
当发生冲突时,相同hash值的键值对会组成链表.
这种数组+链表的组合形式大部分情况下都能有不错的性能效果,Java6、7就是这样设计的. 然而,在极端情况下,一组(比如经过精心设计的)键值对都发生了冲突,这时的哈希结构就会退化成一个链表,使HashMap性能急剧下降.

数组中的每一项又是一个链表
当新建一个HashMap时,就会初始化一个数组.
3 三大集合与迭代子
public class HashMapExam {
    public static void main(String[] args) {
        Map map = new HashMap(16);
        for (int i = 0; i < 15; i++) {
            map.put(i, new String(new char[]{(char) ('A'+ i)}));
        }
        System.out.println("======keySet=======");
        Set set = map.keySet();
        Iterator iterator = set.iterator();
        while (iterator.hasNext()) {
            System.out.println(iterator.next());
        }
        System.out.println("======values=======");
        Collection values = map.values();
        Iterator stringIterator=values.iterator();
        while (stringIterator.hasNext()) {
            System.out.println(stringIterator.next());
        }
        System.out.println("======entrySet=======");
        for (Map.Entry entry : map.entrySet()) {
            System.out.println(entry);
        }
    }
}
  4 源码分析
//默认的初始容量16,且实际容量是2的整数幂
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    //最大容量(传入容量过大将被这个值替换)
    static final int MAXIMUM_CAPACITY = 1 << 30;
    // 默认加载因子为0.75(当表达到3/4满时,才会再散列),这个因子在时间和空间代价之间达到了平衡.更高的因子可以降低表所需的空间,但是会增加查找代价,而查找是最频繁操作
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //桶的树化阈值:即 链表转成红黑树的阈值,在存储数据时,当链表长度 >= 8时,则将链表转换成红黑树
    static final int TREEIFY_THRESHOLD = 8;
   // 桶的链表还原阈值:即 红黑树转为链表的阈值,当在扩容(resize())时(HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 <= 6时,则将 红黑树转换成链表
    static final int UNTREEIFY_THRESHOLD = 6;
   //最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树)
  链表长度如果是小于等于6,6/2=3,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短
假设一下,如果设计成链表个数超过8则链表转换成树结构,链表个数小于8则树结构转换成链表,如果一个HashMap不停的插入、删除元素,链表个数在8左右徘徊,就会频繁的发生树转链表、链表转树,效率会很低。
// 为了避免扩容/树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD
    // 小于该值时使用的是扩容哦!!!
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储数据的Node数组,长度是2的幂.
    // HashMap采用链表法解决冲突,每一个Node本质上是一个单向链表
    //HashMap底层存储的数据结构,是一个Node数组.上面得知Node类为元素维护了一个单向链表.至此,HashMap存储的数据结构也就很清晰了:维护了一个数组,每个数组又维护了一个单向链表.之所以这么设计,考虑到遇到哈希冲突的时候,同index的value值就用单向链表来维护
    //与 JDK 1.7 的对比(Entry类),仅仅只是换了名字
    transient Node[] table;
    // HashMap的底层数组中已用槽的数量
    transient int size;
    // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
    int threshold;
    // 负载因子实际大小
    final float loadFactor;
    // HashMap被改变的次数
    transient int modCount;
    // 指定“容量大小”和“加载因子”的构造函数,是最基础的构造函数
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        // HashMap的最大容量只能是MAXIMUM_CAPACITY
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //负载因子须大于0
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        // 设置"负载因子"
        this.loadFactor = loadFactor;
        // 设置"HashMap阈值",当HashMap中存储数据的数量达到threshold时,就需将HashMap的容量加倍
        this.threshold = tableSizeFor(initialCapacity);
    }
  tableSizeFor方法保证函数返回值是大于等于给定参数initialCapacity最小的2的幂次方的数值
static final int tableSizeFor(int cap) {
  int n = cap - 1;
  n |= n >>> 1;
  n |= n >>> 2;
  n |= n >>> 4;
  n |= n >>> 8;
  n |= n >>> 16;
  return (n = MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
  }
  a |= b 等同于 a = a|b
  - 
    
int n = cap - 1 
给定的cap 减 1,为了避免参数cap本来就是2的幂次方,这样一来,经过后续操作,cap将会变成2 * cap,是不符合我们预期的 - 
    
n |= n >>> 1 
n >>> 1 : n无符号右移1位,即n二进制最高位的1右移一位
n | (n >>> 1) 导致 n二进制的高2位值为1
目前n的高1~2位均为1 - 
    
n |= n >>> 2 
n继续无符号右移2位
n | (n >>> 2) 导致n二进制表示的高34位经过运算值均为1
目前n的高14位均为1 - 
    
n |= n >>> 4 
n继续无符号右移4位
n | (n >>> 4) 导致n二进制表示的高58位经过运算值均为1
目前n的高18位均为1 - 
    
n |= n >>> 8 
n继续无符号右移8位
n | (n >>> 8) 导致n二进制表示的高916位经过运算值均为1
目前n的高116位均为1 
当然如果经过运算值大于MAXIMUM_CAPACITY,直接选用MAXIMUM_CAPACITY.
   4.1 为什么cap要保持为2的幂次方?

在HashMap存储数据时,我们期望数据能均匀分布,以防止哈希冲突.
自然而然我们就会想到去用%取余操作来实现我们这一构想
   index = e.hash % newCap
  

4.2 Node类
static class Node implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Node next;
        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }
  4.3 TreeNode
static final class TreeNode extends LinkedHashMap.Entry {
        TreeNode parent; // red-black tree links
        TreeNode left;
        TreeNode right;
        TreeNode prev; // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node next) {}
        // 返回当前节点的根节点
        final TreeNode root() {
          for (TreeNode r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }
 }
  此结构是Java8新加的
4.4 hash方法

key.hashCode()函数调用的是key键值类型自带的哈希函数,返回int型散列值
但问题是一个40亿长度的数组,内存是放不下的.HashMap扩容之前的数组初始大小才16,所以这个散列值是不能直接拿来用的.
用之前还要先做对数组的长度取模运算,得到的余数才能用来访问数组下标
源码中模运算就是把散列值和数组长度做一个"与"操作,

因为这样(数组长度-1)正好相当于一个“低位掩码”
“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问
2进制表示是00000000 00000000 00001111
和某散列值做“与”操作如下,结果就是截取了最低的四位值


而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。
e.hash & (newCap - 1)
   newCap是2的幂,所以newCap - 1的高位全0
所以在计算key的hashCode时,用其自身hashCode与其低16位做异或操作
这也就让高位参与到index的计算中来了,即降低了哈希冲突的风险又不会带来太大的性能问题
4.5 Put方法



public V put(K key, V value) {
        // 对key的hashCode()做hash
        return putVal(hash(key), key, value, false, true);
    }
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node[] tab; Node p; int n, i;
        // 步骤① tab为空则调用resize()初始化创建
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 步骤② 计算index,并对null做处理
        //tab[i = (n - 1) & hash对应下标的第一个节点
        if ((p = tab[i = (n - 1) & hash]) == null)
            // 无哈希冲突的情况下,将value直接封装为Node并赋值
            tab[i] = newNode(hash, key, value, null);
        else {
            Node e; K k;
            // 步骤③ 节点的key相同,直接覆盖节点
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 步骤④ 判断该链为红黑树
            else if (p instanceof TreeNode)
                 // p是红黑树类型,则调用putTreeVal方式赋值
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
            // 步骤⑤ p非红黑树类型,该链为链表
            else {
                // index 相同的情况下
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        // 如果p的next为空,将新的value值添加至链表后面
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1)
                            // 如果链表长度大于8,链表转化为红黑树,执行插入
                            treeifyBin(tab, hash);
                        break;
                    }
                    // key相同则跳出循环
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    //就是移动指针方便继续取 p.next
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                //根据规则选择是否覆盖value
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 步骤⑥:超过最大容量,就扩容
        if (++size > threshold)
            // size大于加载因子,扩容
            resize();
        afterNodeInsertion(evict);
        return null;
    }
  4.6 resize

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,内部的数组无法装载更多的元素时,就需要扩大数组的长度.
当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组
/**
     * 该函数有2种使用情况:1.初始化哈希表 2.当前数组容量过小,需扩容
     */
final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 针对情况2:若扩容前的数组容量超过最大值,则不再扩充
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 针对情况2:若无超过最大值,就扩充为原来的2倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                //newCap设置为oldCap的2倍并小于MAXIMUM_CAPACITY,且大于默认值, 新的threshold增加为原来的2倍
                newThr = oldThr << 1; // double threshold
        }
        // 针对情况1:初始化哈希表(采用指定 or 默认值)
        else if (oldThr > 0) // initial capacity was placed in threshold
            // threshold>0, 将threshold设置为newCap,所以要用tableSizeFor方法保证threshold是2的幂次方
            newCap = oldThr;
        else { // zero initial threshold signifies using defaults
            // 默认初始化
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 计算新的resize上限
        if (newThr == 0) {
            // newThr为0,newThr = newCap * 0.75
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            // 新生成一个table数组
            Node[] newTab = (Node[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            // oldTab 复制到 newTab
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                       // 链表只有一个节点,直接赋值
                       //为什么要重新Hash呢?因为长度扩大以后,Hash的规则也随之改变。
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        // e为红黑树的情况
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    else { // preserve order链表优化重hash的代码块
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            // 原索引
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            // 原索引 + oldCap
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 原索引放到bucket里
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        // 原索引+oldCap放到bucket里
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
  
   4.7 remove方法
final Node removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node[] tab; Node p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                // index 元素只有一个元素
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    // index处是一个红黑树
                    node = ((TreeNode)p).getTreeNode(hash, key);
                else {
                    // index处是一个链表,遍历链表返回node
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 分不同情形删除节点
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
  4.8 get
/**
   * 函数原型
   * 作用:根据键key,向HashMap获取对应的值
   */ 
   map.get(key);
 /**
   * 源码分析
   */ 
   public V get(Object key) {
    Node e;
    // 1\. 计算需获取数据的hash值
    // 2\. 通过getNode()获取所查询的数据 ->>分析1
    // 3\. 获取后,判断数据是否为空
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
   * 分析1:getNode(hash(key), key))
   */ 
final Node getNode(int hash, Object key) {
    Node[] tab; Node first, e; int n; K k;
    // 1\. 计算存放在数组table中的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 4\. 通过该函数,依次在数组、红黑树、链表中查找(通过equals()判断)
        // a. 先在数组中找,若存在,则直接返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // b. 若数组中没有,则到红黑树中寻找
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode)first).getTreeNode(hash, key);
            // c. 若红黑树中也没有,则通过遍历,到链表中寻找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
  /**
   * 源码分析:resize(2 * table.length)
   * 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
   */ 
   void resize(int newCapacity) {
    // 1\. 保存旧数组(old table)
    Entry[] oldTable = table;
    // 2\. 保存旧容量(old capacity ),即数组长度
    int oldCapacity = oldTable.length;
    // 3\. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }
    // 4\. 根据新容量(2倍容量)新建1个数组,即新table
    Entry[] newTable = new Entry[newCapacity];
    // 5\. (重点分析)将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1
    transfer(newTable);
    // 6\. 新数组table引用到HashMap的table属性上
    table = newTable;
    // 7\. 重新设置阈值
    threshold = (int)(newCapacity * loadFactor);
}
 /**
   * 分析1.1:transfer(newTable);
   * 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
   * 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
   */ 
void transfer(Entry[] newTable) {
      // 1\. src引用了旧数组
      Entry[] src = table;
      // 2\. 获取新数组的大小 = 获取新容量大小
      int newCapacity = newTable.length;
      // 3\. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
      for (int j = 0; j < src.length; j++) {
          // 3.1 取得旧数组的每个元素
          Entry e = src[j];
          if (e != null) {
              // 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
              src[j] = null;
              do {
                  // 3.3 遍历 以该数组元素为首 的链表
                  // 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
                  Entry next = e.next;
                 // 3.3 重新计算每个元素的存储位置
                 int i = indexFor(e.hash, newCapacity);
                 // 3.4 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
                 // 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
                 e.next = newTable[i];
                 newTable[i] = e;
                 // 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
                 e = next;
             } while (e != null);
             // 如此不断循环,直到遍历完数组上的所有数据元素
         }
     }
 }
  



单线程rehash

多线程并发下的rehash

e.next = newTable[1] = null
newTable[1] = e = key(5)
e = next = key(9)
  


Fast-fail
产生原因
HashIterator() {
  expectedModCount = modCount;
  if (size > 0) { // advance to first entry
  Entry[] t = table;
  while (index < t.length && (next = t[index++]) == null)
    ;
  }
}
  线程安全解决方案
往期推荐
更多后端基础知识与面试题
扫描下方二维码关注
一起进步大厂面基!
评论
