经理让我复盘上次Redis缓存雪崩事故
共 1106字,需浏览 3分钟
·
2020-12-16 21:53
事故背景
公司最近安排了一波商品抢购活动,由于后台小哥操作失误最终导致活动效果差,被用户和代理商投诉了。经理让我带同事们一起复盘这次线上事故。
什么原因造成的?
抢购活动计划是零点准时开始,
22:00 运营人员通过后台将商品上线
23:00后台小哥已经将商品导入缓存中,提前预热
抢购开始的瞬间流量非常大,按计划是通过Redis承担大部分用户查询请求,避免请求全部落在数据库上。
如上图预期大部分请求会命中缓存,但是由于后台小哥预热缓存的时候将所有商品的缓存时间都设置为2小时过期,所有的商品在同一个时间点全部失效,瞬间所有的请求都落在数据库上,导致数据库扛不住压力崩溃,用户所有的请求都超时报错。
实际上所有的请求都直接落到数据库,如下图:
什么时候发现的?
凌晨01:02 SRE 收到系统告警,登录运维管理系统发现数据库节点 CPU和内存飙升超过阈值,迅速联系后台开发人员定位排查。
为什么没有早点发现?
由于缓存设置过期时间是2小时,凌晨1点前缓存可以命中大部分请求,数据库服务处于正常状态。
发现时采取了什么措施?
后台小哥通过日志定位排查发现问题后,进行了一系列操作:
首先通过API Gateway(网关)限制大部分流量进来
接着将宕机的数据库服务重启
再重新预热缓存
确认缓存和数据库服务正常后将网关流量正常放开,大约01:30 抢购活动恢复正常。
如何避免下次出现?
这次事故的原因其实就是出现了缓存雪崩,查询数据量巨大,请求直接落到数据库上,引起数据库压力过大宕机。
在业界解决缓存雪崩的方法其实比较成熟了,比如有:
均匀过期
加互斥锁
缓存永不过期
(1)均匀过期
设置不同的过期时间,让缓存失效的时间点尽量均匀。通常可以为有效期增加随机值或者统一规划有效期。
(2)加互斥锁
跟缓存击穿解决思路一致,同一时间只让一个线程构建缓存,其他线程阻塞排队。
(3)缓存永不过期
跟缓存击穿解决思路一致,缓存在物理上永远不过期,用一个异步的线程更新缓存。
复盘总结
通过与同事复盘这次线上事故,大家对于缓存雪崩有了更深刻的理解。为了避免再次出现缓存雪崩事故,大家一起讨论了多个解决方案:
(1)均匀过期
(2)加互斥锁
(3)缓存永不过期
希望技术人能够敬畏每一行代码!
有道无术,术可成;有术无道,止于术
欢迎大家关注Java之道公众号
好文章,我在看❤️