一份可以让 Python 变得更快的工具清单
共 2663字,需浏览 6分钟
·
2021-05-25 12:46
作者:linuxer小橡皮
来源:
https://zhuanlan.zhihu.com/p/31044229
大家好,欢迎来到 Crossin的编程教室 !
经常有人会担心,python的运算速度是不是不够快。
代码的效率首先还是取决于代码的算法本身是否优化。
比如适用于双向队列的 deque,以及在合适的条件下运用 bisect 和 heapq 来提升算法的性能。
以前文章也提到过,Python提供了当今最高级也是最有效的排序算法(list.sort)。
另外还有一个功能多样又迅速的散列表(dict)。而且如果写迭代器封装、功能性代码或者是某种额外扩展的时候,或许 CyToolz可以用得到。当然在itertools和 functools模块中,还有很多函数可以带来很高效的代码。
而我们今天要分享的是一些优化Python代码的工具,这些并不能代替算法设计,但是能在相同条件下让Python加速很多倍,并且让代码变得更简洁。
这里主要讲优化单处理器的代码,下面会介绍一些高效的函数实现,也有已经封装好的拓展模块,还包括速度更快的Python解释器。
当然多处理器版本确实能大幅提高运行效率。如果想了解多核编程,可以从multiprocessing模块开始。而且也能找到非常多的关于分布式计算的第三方工具。推荐看一下Python wiki上的关于Parallel Processing的内容。
接下来,我们就看一看这份Python加速工具的清单:
1. NumPy、SciPy、Sage 和 Pandas
先说,NumPy。它的核心是一个多维数字数组的实现。除了这个数据结构之外,还实现了若干个函数和运算符,可以高效地进行数组运算。并且对于被调用的次数进行了精简。它可以被用来进行极其高效的数学运算。
SciPy和Sage都将NumPy内置为自身的一部分,同时内置了其他的不同的工具,从而可以用于特定科学、数学和高性能计算的模块。
Pandas是一个侧重于数据分析的工具。如果处理大量半结构化数据的时候,可能也会用到Pandas相关的工具,比如Blaze。
2. PyPy、Pyston、Parakeet、Psyco和Unladen Swallow
让代码运行的更快,侵入性最小的就是使用实时编译器(JIT编译)。以前的话我们可以直接安装Psyco。安装之后导入psyco,然后调用psyco.full()。代码运行速度就可以明显提升。运行Python代码的时候,它可以实时监控程序,会将一部分代码编译为了机器码。
现在好多Psyco等加速器的项目已经停止维护了,不过类似的功能在PyPy中得到了继承。
PyPy为了方便分析、优化和翻译,用Python语言将Python重新实现了一遍,这样就可以JIT编译。而且PyPy可以直接将代码翻译成像C那样的性能更高的语言。
Unladen Swallow是一个Python的JIT编译器。是Python解释器的一本版本,被称为底层虚拟机(LLVM)。不过这个开发已经停止了。
Pyston是一个与LLVM平台较为接近的Python的JIT编译器。很多时候已经优于Python的实现,但不过还有很多地方不完善。
3. GPULib、PyStream、PyCUDA和PyOpenCL
这四个都是用在图像处理单元来实现代码的加速。前面讲的都是用代码优化来实现加速的。而这些都是从硬件层面上进行加速,如果有一个强大的GPU,我们可以用GPU来计算,从而减少CPU宝贵的资源。
PyStream古老一点。GPULib提供了基于GPU的各种形式的数据计算。
如果用GPU加速自己的代码,可以用PyCUDA和PyOpenCL。
4. Pyrex、Cython、Numba 和 Shedskin
这四个项目都致力于将Python代码翻译为C、C++和LLVM的代码。Shedskin会将代码编译为C++语言。Pyrex、Cython编译的主要目标是C语言。Cython也是Pyrex的一个分支。
而且,Cython还有NumPy数组的额外支持。
如果面向数组和数学计算的时候,Numba是更好的选择导入时会自动生成相应的LLVM的代码。升级版本是NumbaPro,还提供了对GPU的支持。
5. SWIG、F2PY 和 Boost.Python
这些工具可以将其他的语言封装为Python的模块。第一个可以封装C/C++语言。F2PY可以封装Fortran。Boost.Python可以封装C++语言。
SUIG只要启动一个命令行工具,往里面输入C或者C++的头文件,封装器代码就会自动生成。除了Python,而且可以成为其他语言的封装器,比如Java和PHP。
6. ctypes、llvm-py 和 CorePy2
这些模块可以帮助我们实现Python底层对象的操作。ctypes模块可以用于在内存中构建编译C的对象。并且调用共享库中的C的函数。不过ctypes已经包含在Python的标准库里面了。
llvm-py主要提供LLVM的Python接口。以便于构建代码,然后编译他们。也可以在Python中构建它的编译器。当然搞出自己编程语言也是可以的。
CorePy2也可以进行加速,不过这个加速是运行在汇编层的。
7. Weave、Cinpy和PyInline
这三个包,就可以让我们在Python代码中直接使用C语言或者其他的高级语言。混合代码,依然可以保持整洁。可以使用Python代码的字符串的多行特性,可以使其他的代码按照自身的风格来进行排版。
8. 其他工具
如果我们要节省内存,就不能使用JIT了。一般JIT都太耗费内存。
有一句话说的很对,时间和内存经常不能兼得,而我们在工程开发中,总是要寻找他们的平衡点。
至于其他的一些东西,比如Micro Python项目,这个是用在嵌入式设备或者微控制器上面使用的。
如果只是想在Python环境中工作,然后想用别的语言,可以看看这个项目Julia。
以上便是给大家总结的一份Python优化工具清单。
_往期文章推荐_