亿万级分库分表后如何进行跨表分页查询

共 28754字,需浏览 58分钟

 ·

2023-05-18 12:14

前言

在常规的应用系统开发中,很少会涉及到需要对数据进行分库或者分表的操作,多数情况下,我们习惯使用ORM带来的便利,且使用连接查询是一种高效率的开发方式,就算涉及到分表的场景,很多时候也都可以使用ORM自带的分表规则来解决问题。

比如在电商场景中,用户和订单是属于重点增量的数据,通常情况下,或者按用户编号取模或者按订单编号取模进行分表,按便利性来区分,可以使用按用户编号分表解决后续跨表分页查询问题,这也是推荐的方式之一。

据说淘宝采用的是双写订单,即客户和商家各自一套冗余数据库,再指向订单表,这样做可以规避资源抢夺的问题。

分表后查询的多种方法

全局表查询

顾名思义,全局查询就是将分表后的数据主键再集中存储到一张表中,由于全局表只存储很简单的编号信息,查询效率相对较高,但是在数据持续增长的情况下,压力也越来越大。

禁止跳页查询

禁止跳页查询在移动互联网中广泛被应用,这种方法的原理是在查询中摒弃舍弃传统的Page,转而使用一个timestamp时间戳来代码页码,下一页的查询总是在上一页的最后一条记录的时间戳之后,当客户端拉取不到任何数据的时候,即可停止分页。

这种方法带的一个问题就是不允许进行跳转分页,并且会带来冗余查询的问题,比如需要查询多张表后才得到PageSize需要的数据量,只能按部就班的往下查询,不能进行并行查询。特别致命的是,此方法还将带来重复数据的问题。对数据精度要求不高的场景可以采用。

按日期的二次查询法

按日期的二次查询法号称可以解决分页带来的性能和精度问题,具体原理为,先将分页跳过的数据量平均分布到所有表中,如 Page=10,PageSize=50,如果有5个分表,则SQL语句:page=page/5,LIMIT 2,10;分别对5张表进行查询,得到5个结果集,此时,5个结果集里面分别有10条数据,其中下标0和rn-1的结果分别是当前结果集中的最小和最大时间戳(maxTimestamp),通过比较5张表的返回记录得到一个最小的时间戳 minTimestamp,再将这个最小的时间戳带入SQL条件进行二次查询,SQL代码

    
  1. SELECT * FROM TABLE_NAME WHERE Timestamp BETWEEN @minTimestamp AND @maxTimestamp ORDER BY Timestamp

通过上面的代码,可以从数据库中得到一个完全的结果集,然后在内存中将5个结果集合并排序,取分页数据即可。看起来无懈可击,完美解决了上面两种分页查询引起的问题。实际上我个人认为,这里面还是有一些需要注意的地方,比如由于分表规则的问题导致第一次查询的表比较多(可能几千张表),又或者在二次查询中,某个区间的数据比较大,最后就是在内存中合并结果集也会造成性能问题。
这种查询方法还是解决了精度的问题,也部分解决了性能问题,特别是在取模分表的场景,数据随机性比较大的情况下,还是非常有用的。

大数据集成法

当数据量达到一定程度的时候,可以考虑上ELK或者其它大数据套件,可以很好的解决分页带的影响。

NewSql法

如果有条件,可以迁移数据库到NewSql类型的数据库上,NewSql数据库属于分布式数据库,既有关系数据库的优点又可以无限扩表,通常还支持关系数据库间的无障碍迁移,比如国产的TiDB数据库等。

有序的二次查询法

有序的二次查询法是基于上面的按日期的二次查询法发展而来,这种方法目前还处于测试阶段,具体做法是将数据按天进行分表,这样就可以确保数据块是连续的,以查询最近17天的分页数据为例,先查询出所有表的总行数,这里使用 COUNT(*) ,Mysql 会优化为information_schema.TABLES.TABLE_ROWS 索引查询提高查询效率,不用担心性能问题,下面列出详细的测试步骤。

建立分页实体

    
  1. public class PageEntity

  2. {

  3. /// <summary>

  4. /// 跳过的记录数

  5. /// </summary>

  6. public long Skip { get ; set ; }

  7. /// <summary>

  8. /// 选取的记录数

  9. /// </summary>

  10. public long Take { get ; set ; }

  11. /// <summary>

  12. /// 总行数

  13. /// </summary>

  14. public long Total { get ; set ; }

  15. /// <summary>

  16. /// 表名

  17. /// </summary>

  18. public string TableName { get ; set ; }

  19. }

定义分页算法类

    
  1. public class PageDataService

  2. {

  3. ...

  4. }

初始化表

在 PageDataService 类中使用内存表模拟数据库表,主要模拟数据分页的情况,所以每个表的数据量都很小,方便人肉计算和跳页

    
  1. private readonly static List < PageEntity > entitys = new List < PageEntity >()

  2. {

  3. new PageEntity { Total = 12 , TableName = "230301" },

  4. new PageEntity { Total = 3 , TableName = "230302" },

  5. new PageEntity { Total = 4 , TableName = "230303" },

  6. new PageEntity { Total = 1 , TableName = "230304" },

  7. new PageEntity { Total = 1 , TableName = "230305" },

  8. new PageEntity { Total = 7 , TableName = "230306" },

  9. new PageEntity { Total = 2 , TableName = "230307" },

  10. new PageEntity { Total = 11 , TableName = "230308" },

  11. new PageEntity { Total = 41 , TableName = "230309" },

  12. new PageEntity { Total = 25 , TableName = "230310" },

  13. new PageEntity { Total = 33 , TableName = "230311" },

  14. new PageEntity { Total = 8 , TableName = "230312" },

  15. new PageEntity { Total = 3 , TableName = "230313" },

  16. new PageEntity { Total = 0 , TableName = "230314" },

  17. new PageEntity { Total = 17 , TableName = "230315" },

  18. new PageEntity { Total = 88 , TableName = "230316" },

  19. new PageEntity { Total = 2 , TableName = "230317" }

  20. };

分页算法

    
  1. public static List < PageEntity > Pagination ( int page , int pageSize )

  2. {

  3. long preBlock = 0 ;

  4. int currentPage = page ;

  5. long currentPageSize = pageSize ;

  6. List < PageEntity > results = new List < PageEntity >();

  7. foreach ( var item in entitys )

  8. {

  9. var skip = (( currentPage - 1 ) * currentPageSize ) + preBlock ;

  10. var remainder = item . Total - skip ;

  11. if ( remainder > 0 )

  12. {

  13. item . Skip = skip ;

  14. item . Take = currentPageSize ;

  15. if ( remainder >= currentPageSize )

  16. {

  17. results . Add ( item );

  18. break ;

  19. }

  20. else

  21. {

  22. currentPageSize = currentPageSize - remainder ;

  23. item . Take = remainder ;

  24. currentPage = 1 ;

  25. preBlock = 0 ;

  26. results . Add ( item );

  27. }

  28. }

  29. else

  30. {

  31. preBlock = Math . Abs ( remainder );

  32. currentPage = 1 ;

  33. }

  34. }

  35. // 输出测试结果

  36. if ( results . Count > 0 )

  37. {

  38. Console . ForegroundColor = ConsoleColor . Red ;

  39. Console . WriteLine ( "本次查询,Page:{0},PageSize:{1}" , page , pageSize );

  40. Console . ForegroundColor = ConsoleColor . Gray ;

  41. foreach ( var item in results )

  42. {

  43. Console . WriteLine ( "表:{0},总行数:{1},OFFSET:{2},LIMIT:{3}" , item . TableName , item . Total , item . Skip , item . Take );

  44. }

  45. Console . WriteLine ();

  46. }

  47. else

  48. {

  49. Console . ForegroundColor = ConsoleColor . Red ;

  50. Console . WriteLine ( "分页下无数据:{0},{1}" , page , pageSize );

  51. Console . ForegroundColor = ConsoleColor . Gray ;

  52. }

  53. return results ;

  54. }

在上面的分页算法中,定义了4个私有变量,分别是
preBlock:存跨表数据块长度
currentPage:当前表分页
currentPageSize:当前表分页长度,也是当前表接 preBlock 所需要的查询长度
results:查询表结果,存需要进行二次查询的表结构

接下来,就对最近 17 张表进行模拟轮询计算,把数据块连接起来,首先是计算 skip 的长度,这里使用当前表分页加跨表块

    
  1. var skip = (( currentPage - 1 ) * currentPageSize ) + preBlock

得到真实的 skip,然后用当前表 Total - skip 得到下一表的接续长度

    
  1. var remainder = item . Total - skip ;

再通过判断接续长度 remainder 大于 0,如果小于0则设定 preBlock 和 currentPage 进入下一表结构,如果大于 0 则进一步判断其是否可以覆盖 currentPageSize,如果可以覆盖则记录当前表并跳出循环,否则 重置 currentPageSize 和其它条件后进入下一个表结构。

    
  1. if ( remainder > 0 )

  2. {

  3. item . Skip = skip ;

  4. item . Take = currentPageSize ;

  5. if ( remainder >= currentPageSize )

  6. {

  7. results . Add ( item );

  8. break ;

  9. }

  10. else

  11. {

  12. currentPageSize = currentPageSize - remainder ;

  13. item . Take = remainder ;

  14. currentPage = 1 ;

  15. preBlock = 0 ;

  16. results . Add ( item );

  17. }

  18. }

  19. else

  20. {

  21. preBlock = Math . Abs ( remainder );

  22. currentPage = 1 ;

  23. }

测试分页结果

构建一些测试数据进行分页,看接续是否已经闭合

    
  1. public class Program

  2. {

  3. public static void Main ( string [] args )

  4. {

  5. PageDataService . Pagination ( 1 , 40 );

  6. PageDataService . Pagination ( 2 , 40 );

  7. PageDataService . Pagination ( 3 , 40 );

  8. PageDataService . Pagination ( 4 , 40 );

  9. PageDataService . Pagination ( 5 , 40 );

  10. PageDataService . Pagination ( 6 , 40 );

  11. PageDataService . Pagination ( 7 , 40 );

  12. PageDataService . Pagination ( 8 , 40 );

  13. PageDataService . Pagination ( 9 , 40 );

  14. PageDataService . Pagination ( 113 , 10 );

  15. Console . ReadKey ();

  16. }

  17. }

输出测试结果

2380d408c51e3a0b051354aa79c963a2.webp

通过输出的测试结果,可以看到,数据块是连续的,且已经得到了每次需要查询的表结构数据,在实际应用中,只需要对这个结果执行并行查询然后在内存中归并排序就可以了。

并行查询和排序

    
  1. public static void Query ()

  2. {

  3. var entitys = PageDataService . Pagination ( 1 , 40 );

  4. List < UserEntity > datas = new List < UserEntity >();

  5. Parallel . ForEach ( entitys , entity =>

  6. {

  7. var sql = $ "SELECT * FROM TABLE_{entity.TableName} ORDER BY Timestamp LIMIT {entity.Skip},{entity.Take}" ;

  8. var results = Mysql . Query < UserEntity >( sql );

  9. datas . AddRange ( results );

  10. });

  11. // 排序

  12. datas = datas . OrderByDescending ( x => x . Timestamp ). ToList ();

  13. }

到这里,就完成了有序的二次查询法的算法过程。这种分页算法存在一定的局限性,比如必须是连续的数据块,按一定时间区间进行分表才可使用,大区间查询时的分页,第一次查询会比较慢,比如查询区间为3年内的按天分表分页数据,将会导致第一次查询开启 3*365 个数据库连接,当然,这取决于你第一次查询采用的是并行查询还是轮询,还是有优化空间的。

结束语

本文共列出了多种分库分表方式下的查询问题,大部分 ORM 只解决了分表插入的问题,对于分页查询,实际上也是没有很好的解决方案,原因在于分页查询和业务的分割有着紧密的联系,很多时候不能简单的将业务问题认为是中间件的问题。有序的二次查询法作为一次探索,期望能解决部分业务带来的分页问题。


浏览 41
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报