Pandas爬虫,竟能如此简单!

小数志

共 4338字,需浏览 9分钟

 ·

2021-03-14 11:18


众所周知,一般的爬虫套路无非是构造请求、解析网页、提取要素、存储数据等步骤。构造请求主要用到requests库,提取要素用的比较多的有xpath、bs4、css和re。一个完整的爬虫,代码量少则几十行,多则几百行,对于新手来说学习成本还是比较高的。

那么,有没有什么方法只用几行代码就能爬下所需数据呢?答案是pandas。J哥自从知道了这个神器,尝试了多个网页数据爬取,屡战屡胜,简直不能再舒服!这家伙也太适合初学爬虫的小伙伴玩耍了吧!

本文目录




定 义


pandas中的pd.read_html()这个函数,功能非常强大,可以轻松实现抓取Table表格型数据。无需掌握正则表达式或者xpath等工具,短短的几行代码就可以将网页数据抓取下来。





原 理


一.Table表格型数据网页结构

pandas适合抓取Table表格型数据,那么咱们首先得知道什么样的网页具有Table表格型数据结构(有html基础的大佬可自行跳过这一part)

我们先来看个简单的例子。(快捷键F12可快速查看网页的HTML结构)

指南者留学网

从这个世界大学排行的网站可以看出,数据存储在一个table表格中,thread为表头,tbody为表格数据,tbody中的一个tr对应表中的一行,一个td对应一个表中元素。

我们再来看一个例子:

新浪财经网

也许你已经发现了规律,以Table结构展示的表格数据,大致的网页结构如下:


<table class="..." id="...">

     <thead>

     <tr>

     <th>...</th>

     </tr>

     </thead>

     <tbody>

        <tr>

            <td>...</td>

        </tr>

        <tr>...</tr>

        <tr>...</tr>

        ...

        <tr>...</tr>

        <tr>...</tr>        

    </tbody>

</table>

Table表格一般网页结构


只要网页具有以上结构,你就可以尝试用pandas抓取数据。

二.pandas请求表格数据原理

基本流程

针对网页结构类似的表格类型数据,pd.read_html可以将网页上的表格数据都抓取下来,并以DataFrame的形式装在一个list中返回。


三.pd.read_html语法及参数


pandas.read_html(io, match='.+', flavor=None, 

header=None,index_col=None,skiprows=None, 

attrs=None, parse_dates=False, thousands=', ', 

encoding=None, decimal='.', converters=None, na_values=None, 

keep_default_na=True, displayed_only=True)

基本语法


io :接收网址、文件、字符串;

parse_dates:解析日期;

flavor:解析器;

header:标题行;

skiprows:跳过的行;

attrs:属性,比如 attrs = {'id': 'table'}

主要参数





实 战


一.案例1:抓取世界大学排名(1页数据)

1import pandas as pd 
2import csv
3url1 = 'http://www.compassedu.hk/qs'
4df1 = pd.read_html(url1)[0] #0表示网页中的第一个Table
5df1.to_csv('世界大学综合排名.csv',index=0)

没错,5行代码,几秒钟就搞定,我们来预览下爬取到的数据:

世界大学排行榜


二.案例2:抓取新浪财经基金重仓股数据(6页数据)


1import pandas as pd
2import csv
3df2 = pd.DataFrame()
4for i in range(6):
5    url2 = 'http://vip.stock.finance.sina.com.cn/q/go.php/vComStockHold/kind/jjzc/index.phtml?p={page}'.format(page=i+1)
6    df2 = pd.concat([df2,pd.read_html(url2)[0]])
7    print('第{page}页抓取完成'.format(page = i + 1))
8df2.to_csv('./新浪财经数据.csv',encoding='utf-8',index=0)


没错,8行代码搞定,还是那么简单。如果对翻页爬虫不理解,可查看本公众号历史原创文章实战|手把手教你用Python爬虫(附详细源码),如果对DataFrame合并不理解,可查看本公众号历史原创文章基础|Pandas常用知识点汇总(四)


我们来预览下爬取到的数据:


基金重仓股数据


三.案例3:抓取证监会披露的IPO数据(217页数据)


 1import pandas as pd
2from pandas import DataFrame
3import csv
4import time
5start = time.time() #计时
6df3 = DataFrame(data=None,columns=['公司名称','披露日期','上市地和板块','披露类型','查看PDF资料']) #添加列名
7for i in range(1,218):  
8    url3 ='http://eid.csrc.gov.cn/ipo/infoDisplay.action?pageNo=%s&temp=&temp1=&blockType=byTime'%str(i)
9    df3_1 = pd.read_html(url3,encoding='utf-8')[2]  #必须加utf-8,否则乱码
10    df3_2 = df3_1.iloc[1:len(df3_1)-1,0:-1]  #过滤掉最后一行和最后一列(NaN列)
11    df3_2.columns=['公司名称','披露日期','上市地和板块','披露类型','查看PDF资料'#新的df添加列名
12    df3 = pd.concat([df3,df3_2])  #数据合并
13    print('第{page}页抓取完成'.format(page=i))
14df3.to_csv('./上市公司IPO信息.csv', encoding='utf-8',index=0#保存数据到csv文件
15end = time.time()
16print ('共抓取',len(df3),'家公司,' + '用时',round((end-start)/60,2),'分钟')


这里注意要对抓下来的Table数据进行过滤,主要用到iloc方法,详情可查看本公众号往期原创文章基础|Pandas常用知识点汇总(三)。另外,我还加了个程序计时,方便查看爬取速度。



2分钟爬下217页4334条数据,相当nice了。我们来预览下爬取到的数据


上市公司IPO数据


需要注意的是,并不是所有表格都可以用pd.read_html爬取,有的网站表面上看起来是表格,但在网页源代码中不是table格式,而是list列表格式。这种表格则不适用read_html爬取,得用其他的方法,比如selenium。





相关阅读:


浏览 36
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报