System.currentTimeMillis的性能,真有如此不堪吗?
程序员的成长之路
共 7885字,需浏览 16分钟
·
2021-07-27 09:46
阅读本文大概需要 6.5 分钟。
来自:https://juejin.cn/post/6887743425437925383
# 疑惑,System.currentTimeMillis真有性能问题?
/**
* 弱精度的计时器,考虑性能不使用同步策略。
*
* @author mycat
*/
public class TimeUtil {
//当前毫秒数的缓存
private static volatile long CURRENT_TIME = System.currentTimeMillis();
public static final long currentTimeMillis() { return CURRENT_TIME; }
public static final long currentTimeNanos() { return System.nanoTime(); }
//更新缓存
public static final void update() { CURRENT_TIME = System.currentTimeMillis(); }
}
//使用定时任务调度线程池,定期(每1s)调用update方法更新缓存时钟
heartbeatScheduler.scheduleAtFixedRate(processorCheck(), 0L, 1000, TimeUnit.MILLISECONDS);
# 思索,System.currentTimeMillis有什么性能问题
System.currentTimeMillis要访问系统时钟,这属于临界区资源,并发情况下必然导致多线程的争用 System.currentTimeMillis()之所以慢是因为去跟系统打了一次交道 我有测试记录,并发耗时就是比单线程高250倍!
大家可以把顺序锁当成是解决了“ABA问题”的CompareAndSwap锁。对于一个临界区资源(这里是xtime),有一个操作序列号,写操作会使序列号+1,读操作则不会。 写操作:CAS使序列号+1 读操作:先获取序列号,读取数据,再获取一次序列号,前后两次获取的序列号相同,则证明进行读操作时没有写操作干扰,那么这次读是有效的,返回数据,否则说明读的时侯可能数据被更改了,这次读无效,重新做读操作。 大家可能有个疑问:读xtime的时候数据可能被更改吗?难度读操作不是原子性的吗?这是因为xtime是64位的,对于32位机器是需要分两次读的,而64位机器不会产生这个并发的问题。
long begin = System.nanoTime();
//单次调用System.currrentTimeMillis()
long end = System.nanoTime();
sum += end - begin;
记录每次调用的总耗时,这种方法虽然会把System.nanoTime()也算进总耗时里,但因为不论并发测试还是单线程测试都会记录System.nanoTime(),不会导致测试的不公平
# 数据说话,System.currentTimeMillis的性能没有问题
System代表 System.currentTimeMillis 缓存时钟代表 使用静态成员变量做System.currentTimeMillis缓存的时钟类 200线程-Tomcat的默认线程数
使用JMH(Java基准测试框架)的测试结果
JMH按照推荐使用了双倍CPU的线程数(8线程),统计的是平均时间,测试代码见文末
测试结果分析
这里没有做“new一个对象”的测试,是因为并不是代码里写了new Object(),JVM就会真的会给你在堆内存里new一个对象。这是JVM的一个编译优化——逃逸分析:先分析要创建的对象的作用域,如果这个对象只在一个method里有效(局部变量对象),则属于未 方法逃逸,不去实际创建对象,而是你在method里调了对象的哪个方法,就把这个方法的代码块内联进来。只在线程内有效则属于未 线程逃逸,会创建对象,但会自动消除我们做的无用的同步措施。
# 最后
测试代码:
public class CurrentTimeMillisTest {
public static void main(String[] args) {
int num = 10000000;
System.out.print("单线程"+num+"次System.currentTimeMillis调用总耗时:");
System.out.println(singleThreadTest(() -> {
long l = System.currentTimeMillis();
},num));
System.out.print("单线程"+num+"次CacheClock.currentTimeMillis调用总耗时:");
System.out.println(singleThreadTest(() -> {
long l = CacheClock.currentTimeMillis();
},num));
System.out.print("并发"+num+"次System.currentTimeMillis调用总耗时:");
System.out.println(concurrentTest(() -> {
long l = System.currentTimeMillis();
},num));
System.out.print("并发"+num+"次CacheClock.currentTimeMillis调用总耗时:");
System.out.println(concurrentTest(() -> {
long l = CacheClock.currentTimeMillis();
},num));
}
/**
* 单线程测试
* @return
*/
private static long singleThreadTest(Runnable runnable,int num) {
long sum = 0;
for (int i = 0; i < num; i++) {
long begin = System.nanoTime();
runnable.run();
long end = System.nanoTime();
sum += end - begin;
}
return sum;
}
/**
* 并发测试
* @return
*/
private static long concurrentTest(Runnable runnable,int num) {
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(200,200,60, TimeUnit.SECONDS,new LinkedBlockingQueue<>(num));
long[] sum = new long[]{0};
//闭锁基于CAS实现,并不适合当前的计算密集型场景,可能导致等待时间较长
CountDownLatch countDownLatch = new CountDownLatch(num);
for (int i = 0; i < num; i++) {
threadPoolExecutor.submit(() -> {
long begin = System.nanoTime();
runnable.run();
long end = System.nanoTime();
//计算复杂型场景更适合使用悲观锁
synchronized(CurrentTimeMillisTest.class) {
sum[0] += end - begin;
}
countDownLatch.countDown();
});
}
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
return sum[0];
}
/**
* 缓存时钟,缓存System.currentTimeMillis()的值,每隔20ms更新一次
*/
public static class CacheClock{
//定时任务调度线程池
private static ScheduledExecutorService timer = new ScheduledThreadPoolExecutor(1);
//毫秒缓存
private static volatile long timeMilis;
static {
//每秒更新毫秒缓存
timer.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
timeMilis = System.currentTimeMillis();
}
},0,1000,TimeUnit.MILLISECONDS);
}
public static long currentTimeMillis() {
return timeMilis;
}
}
}
使用JMH的测试代码:
(Mode.AverageTime)
(TimeUnit.MICROSECONDS)
//120轮预热,充分利用JIT的编译优化技术
120,time = 1,timeUnit = TimeUnit.MILLISECONDS) (iterations =
1,timeUnit = TimeUnit.MICROSECONDS) (time =
//线程数:CPU*2(计算复杂型,也有CPU+1的说法)
8) (
1) (
(Scope.Benchmark)
public class JMHTest {
public static void main(String[] args) throws RunnerException {
testNTime(10000);
}
private static void testNTime(int num) throws RunnerException {
Options options = new OptionsBuilder()
.include(JMHTest.class.getSimpleName())
.measurementIterations(num)
.output("E://testRecord.log")
.build();
new Runner(options).run();
}
/**
* System.currentMillisTime测试
* @return 将结果返回是为了防止死码消除(编译器将 无引用的变量 当成无用代码优化掉)
*/
public long testSystem() {
return System.currentTimeMillis();
}
/**
* 缓存时钟测试
* @return
*/
public long testCacheClock() {
return JMHTest.CacheClock.currentTimeMillis();
}
/**
* 缓存时钟,缓存System.currentTimeMillis()的值,每隔1s更新一次
*/
public static class CacheClock{
private static ScheduledExecutorService timer = new ScheduledThreadPoolExecutor(1);
private static volatile long timeMilis;
static {
timer.scheduleAtFixedRate(new Runnable() {
public void run() {
timeMilis = System.currentTimeMillis();
}
},0,1000,TimeUnit.MILLISECONDS);
}
public static long currentTimeMillis() {
return timeMilis;
}
}
}
推荐阅读:
if(a==1且a==2且a==3),有没有可能为 true?
最近面试BAT,整理一份面试资料《Java面试BATJ通关手册》,覆盖了Java核心技术、JVM、Java并发、SSM、微服务、数据库、数据结构等等。
朕已阅
评论