Nature|ChatGPT和生成式AI对科学意味着什么?
                      
新智元报道
来源:科技世代千高原 编辑:好困【新智元导读】研究人员对人工智能的最新进展感到兴奋,但也感到忧虑。
    
论文地址:https://www.biorxiv.org/content/10.1101/2023.01.21.525030v1
  正如 Greene 和 Pividori 在1 月 23 日的预印本中所报道的那样,这个助手不是一个人,而是一种名为 GPT-3 的人工智能算法,该算法于 2020 年首次发布。
    
  它是一种被大肆宣传的生成式 AI 聊天机器人式工具,无论是被要求创作散文、诗歌、计算机代码,还是编辑研究论文。
  其中最著名的工具(也称为大型语言模型或 LLM)是 ChatGPT,它是 GPT-3 的一个版本,在去年 11 月发布后一举成名,因为它免费且易于访问。其他生成式 AI 可以生成图像或声音。
  
文章地址:https://www.nature.com/articles/d41586-021-00530-0
「我印象非常深刻,」在费城宾夕法尼亚大学工作的 Pividori 说。「这将帮助我们提高研究人员的工作效率。」其他科学家表示,他们现在经常使用 LLM,不仅是为了编辑手稿,也是为了帮助他们编写或检查代码以及集思广益。 「我现在每天都用 LLM,」位于雷克雅未克的冰岛大学的计算机科学家 Hafsteinn Einarsson 说。 他从 GPT-3 开始,但后来改用 ChatGPT,这有助于他编写演示幻灯片、学生考试和课程作业,并将学生论文转化为论文。「许多人将其用作数字秘书或助理,」他说。
  LLM是搜索引擎、代码编写助手甚至聊天机器人的一部分,它可以与其他公司的聊天机器人协商以获得更好的产品价格。
  
      ChatGPT 的创建者,加利福尼亚州旧金山的 OpenAI,宣布了一项每月 20 美元的订阅服务,承诺更快的响应时间和优先访问新功能
    
    (其试用版仍然免费)。
  
      
  已经投资 OpenAI 的科技巨头微软在 1 月份宣布进一步投资,据报道约为 100 亿美元。
  LLM注定要被纳入通用的文字和数据处理软件中。生成式 AI 未来在社会中的普遍存在似乎是有把握的,尤其是因为今天的工具代表了这项技术还处于起步阶段。
  但 LLM 也引发了广泛的关注——从他们返回谎言的倾向,到担心人们将 AI 生成的文本冒充为自己的文本。
  
  
    
流利但不真实
  总部位于伦敦的软件咨询公司 InstaDeep 的研究工程师 Tom Tumiel 表示,他每天都使用 LLM 作为助手来帮助编写代码。
  「这几乎就像一个更好的 Stack Overflow,」他说,指的是一个流行的社区网站,程序员可以在该网站上互相回答问题。
  但研究人员强调,LLM 在回答问题时根本不可靠,有时会产生错误的回答。「当我们使用这些系统来产生知识时,我们需要保持警惕。」
  这种不可靠性体现在 LLM 的构建方式上。ChatGPT 及其竞争对手通过学习庞大的在线文本数据库中的语言统计模式来工作——包括任何不真实、偏见或过时的知识。
  
    
      
  
    

缺点能克服吗?
一些搜索引擎工具,例如以研究人员为中心的 Elicit,解决了 LLM 的归因问题,首先使用它们的功能来指导对相关文献的查询,然后简要总结引擎找到的每个网站或文档——因此产生明显引用内容的输出(尽管 LLM 可能仍会错误总结每个单独的文档)。 建立 LLM 的公司也很清楚这些问题。 去年 9 月,DeepMind 发表了一篇关于名为 Sparrow 的「对话智能体」的论文。 最近,首席执行官兼联合创始人 Demis Hassabis 告诉《时代》杂志,该论文将在今年以私人测试版的形式发布。 报道称 ,其 目标是开发包括引用消息来源的能力在内的功能。 其他竞争对手,例如 Anthropic,表示他们已经解决了 ChatGPT 的一些问题。
    
  一些科技公司正在根据专业科学文献对聊天机器人进行训练——尽管它们也遇到了自己的问题。
  去年 11 月,拥有 Facebook 的科技巨头 Meta 发布了一个名为 Galactica 的 LLM 项目,该项目接受过科学摘要训练,旨在使其特别擅长制作学术内容和回答研究问题。
    在
    用户让它产生不准确和种族主义之后,该演示已从公共访问中撤出(尽管其代码仍然可用)。
  
  
      「不再可能通过随意滥用它来获得一些乐趣。开心吗?」Meta 的首席人工智能科学家 Yann LeCun在推特上回应批评。
    
    
  
    
      
  
安全与责任
  
      去年,一群学者发布了一个名为 BLOOM 的替代品。研究人员试图通过在少量高质量的多语言文本源上对其进行训练来减少有害输出。
    
    相关团队还完全开放了其训练数据(与 OpenAI 不同)。研究人员已敦促大型科技公司负责任地效仿这个例子——但尚不清楚他们是否会遵守。
  
      
  一些研究人员表示,学术界应该完全拒绝支持大型商业 LLM。除了偏见、安全问题和受剥削的工人等问题外,这些计算密集型算法还需要大量能量来训练,这引发了人们对其生态足迹的担忧。
  更令人担忧的是,通过将思维转移给自动聊天机器人,研究人员可能会失去表达自己想法的能力。
  「作为学者,我们为什么会急于使用和宣传这种产品?」 荷兰奈梅亨 Radboud 大学的计算认知科学家 Iris van Rooij 在博客中写道,敦促学术界抵制他们的吸引力。
  进一步的混乱是一些 LLM 的法律地位,这些 LLM 是根据从互联网上抓取的内容进行训练的,有时权限不太明确。版权和许可法目前涵盖像素、文本和软件的直接复制,但不包括其风格的模仿。
  当这些通过 AI 生成的模仿品通过摄取原件进行训练时,就会出现问题。包括 Stable Diffusion 和 Midjourney 在内的一些 AI 艺术程序的创作者目前正在被艺术家和摄影机构起诉;OpenAI 和微软(连同其子公司技术网站 GitHub)也因创建其 AI 编码助手 Copilot 而被起诉盗版软件。英国纽卡斯尔大学互联网法专家Lilian Edwards表示,强烈抗议可能会迫使法律发生变化。
  强制诚实使用
    
  
      出于科学家的目的,由反剽窃软件开发商 Turnitin 公司开发的工具可能特别重要,因为 Turnitin 的产品已被世界各地的学校、
      大学和学术出版商使用。
      该公司表示,自 GPT-3 于 2020 年发布以来,它一
      直在开发人工智能检测软件,预计将在今年上半年推出。
    
  
      此外,OpenAI 自己也已经发布了 GPT-2 的检测器,并在 1 月份发布了另一个检测工具。
    
  
    
      
  
    


评论

