我们都知道,练得越多,好处越多。职业人员会比业余足球运动员、业余数学爱好者掌握更多的专业技术,他在踢球或论证时就会更有把握。但我们不是非要跟巴萨俱乐部签了合同才能享受足球的乐趣。哪怕是在丙级联赛,球员们也会因一个进球或一记精妙传球而激动不已。同样的道理,人人都能享受数学的乐趣。然而,当一谈到对美的判断时,足球和数学就没有什么共同点了。球迷们对谁踢球踢得最漂亮,很少会达成一致。当然,多数人都会说:当然是我支持的球队。但即使是内心没有支持某支球队的业内专家,对于一场漂亮比赛的看法也各有不同。第一个专家喜欢快速、直接的比赛。第二个专家喜欢彩虹式过人技巧和巴西花式足球。第三个专家偏爱无穷无尽的传球,在过去几十年里,西班牙队用这种传球快把对手逼疯了。美是什么?这个问题,不仅足球迷们在争论,哲学家、艺术家、艺术科学家和心理学家也在争论,都争了好几千年了。但在数学领域,问题却有所不同。当一个数学家说“这是一则特别漂亮的证明”时,几乎不会有同行反驳。这不是很奇怪吗?很明显,数学家们对什么是美,有着共识。然而,我们要寻求美的明确标准是徒劳的。有些人喜爱极其简单,有些人则追求清晰明了或短小精悍。对柏林的数学家马丁•艾格纳(Martin Aigner)来说,美就是由透明性、一致性和简便性组成的三重和弦,是它们使数学证明变得漂亮。跟外行相比,艾格纳对透明、简便的证明的概念肯定会略有不同,但总的来说,你基本无法反驳他。证明就是展示某一陈述的正确性。冗长而复杂的证明并不少见。我想通过一个简单的比喻来说明,我心目中一个漂亮优雅的证明是什么样的。请想象一下,你站在一座山上,你要把你旁边的一块巨石滚下山去。问题是:你的力量根本不足以搬动这块巨石。不管你如何推动和摇晃,这块巨石几乎没有移动过一毫米。你沮丧地围绕着这块巨石走来走去,突然在它背面看到,有一块小石头被卡在它下面,就是这东西使得巨石无法滚动。而这块小石头就是解决问题的关键!你不再试图用自身的力量把巨石滚动起来,而是将巨石摇动一点点,同时快速地抽出小石头。之后,巨石自己就滚动起来。你不要让巨大的岩石滚过一个小的障碍物,而是要直接把小的障碍物拿走。这个方法很聪明,因为它节省了很多力气。对于我来说,一个漂亮的证明就是同理。看似困难或无法解决的问题,突然就变得容易了。英国数论学家戈弗雷•哈罗德•哈代(Godfrey Harold Hardy,1877—1947)甚至宣称,数学普遍都是美的。在他看来,不美的事物根本不能持久:“世上没有一个永久的地方容纳丑陋的数学。”那么哈代所说的“丑陋的数学”,到底是什么意思?我认为,我们所有人的定义都一样:关联不清楚、论证缺失条理和阐释冗繁的数学。
相信数学之美
有一位伟大的数学家,对美丽的证明特别感兴趣,他就是匈牙利人保罗•厄多斯(Paul Erdős,1913—1996)。他说过,有些证明特别美妙,但也有小小的瑕疵,而最遗憾的是,这些证明就错了。像哈代一样,厄多斯坚信世界上一定有既正确又美丽的证明。他甚至还提到要编写一本书,书里的“上帝”收集了所有最完美的证明。“你没必要相信上帝,”他认为,“但作为数学家,要相信一定有这本书。”厄多斯在写完这本书之前去世了。君特•齐格勒(Günter Ziegler)和马丁•艾格纳在 2002 年将这位匈牙利数学家的想法变成现实。他们把作品命名为《证明之书》(Das Buch der Beweise)。可惜这里面收集的大部分证明对非专业读者来说都太难了,大部分都要求读者具备大学数学基础。但是在本章,我想向你们介绍这本书里的一个证明,也是一则经典证明:定理:有无限多个质数。什么样的证明才是最佳的呢?也许我可以尝试,挨个数清楚所有的质数。但在证明过程中,我可能会发现这事没有尽头。这得花多长的时间啊?如果确实有无限多个质数,时间就会无限延长。这样就证明不出来,这点我们都很清楚,那接下来该怎么办?不要直接解决问题,而是间接证明——从后面迂回过来。我们用间接证明来证明论点,也就是反驳论点的对立面。由于数学的逻辑一致性,间接证明是完全可行的。一个论点要么正确,要么错误。两个互相矛盾的论点不可能同时为真。我们回到质数问题。我们不要试图直接解答问题,因为这样我们会面临无穷多数量的困境。相反,我们假设这个论点是错误的,也就是假设只存在有限多个质数。然后我们再看看,这个假设是否真的正确。如果只存在有限多个质数,数学家们则喜欢说成:存在 n 个质数。n 有多大,并不重要。我们将这n 个质数设为 p1、p2、p3、……、pn。我们把这些质数相乘:p1 × p2 × p3 ×…… × pn就会得到一个有趣的自然数:它可以被 n 个质数p1、p2、p3、……、pn 里的任意一个质数整除,因为这个数是所有这些质数的乘积。例如,2×3×5 = 30 当然可以被 2、3 和 5 整除。现在就是这个间接证明的真正窍门:我们在 n 个质数的乘积之上再加 1 :p1 × p2 × p3 ×…… × pn + 1所得之数同样也是一个自然数,但是它不能被这 n 个质数里的任何一个质数整除,确切地说,在做除法之时总是会余 1。我们再回到例子 2、3、5 : 2×3×5+1=31。得到的数 31 既不能被 2 和 3 整除,也不能被 5 整除。从上述思考中,会得出什么结论呢?由于 p1× p2×p3×……×pn+1 不能被这 n 个质数里面的任何一个质数整除,所以这个数本身就一定是一个质数,它不包含在 p1、p2、p3、……、pn 里面;或者它是多个质数的乘积,但这多个质数不属于前面给出的 n 个质数。这就与我们假设的只存在 n 个质数互相矛盾了。也就是说,只存在有限多个质数的假设是错误的。我们刚刚展示了如何将 n 个质数组合为一个新的质数。这也说明,确实存在无限多个质数。这样一来,我们就成功证明了这个定理。这个证明简短得出乎意料。这个证明美妙的地方是,你不必纠结无限多个质数,反正都是不可能的。相反,我们只需要用两行数:p1 × p2 × p3 ×…… × pn和p1×p2×p3×……×pn +1就能证明存在无限多个质数。这太美妙了!