Python 协程与 JavaScript 协程的对比

共 8131字,需浏览 17分钟

 ·

2021-09-15 13:51


剧照:《眷思量》

作者:从零开始的程序员生活

来源:https://www.cnblogs.com/lgjbky/p/14759463.html

前言

以前没怎么接触前端,对 JavaScript 的异步操作不了解,现在有了点了解。一查发现 Python 和 JavaScript 的协程发展史简直就是一毛一样!

这里大致做下横向对比和总结,便于对这两个语言有兴趣的新人理解和吸收。

共同诉求

  • 随着 cpu 多核化,都需要实现由于自身历史原因(单线程环境)下的并发功能
  • 简化代码,避免回调地狱,关键字支持
  • 有效利用操作系统资源和硬件:协程相比线程,占用资源更少,上下文更快

什么是协程?

总结一句话,协程就是满足下面条件的函数:

  • 可以暂停执行(暂停的表达式称为暂停点)
  • 可以从挂起点恢复(保留其原始参数和局部变量)
  • 事件循环是异步编程的底层基石

混乱的历史

Python 协程的进化

  • Python2.2 中,第一次引入了生成器
  • Python2.5 中,yield 关键字被加入到语法中
  • Python3.4 时有了 yield from(yield from 约等于 yield + 异常处理 + send), 并试验性引入的异步 I/O 框架 asyncio(PEP 3156)
  • Python3.5 中新增了 async/await 语法(PEP 492)
  • Python3.6 中 asyncio 库"转正" (之后的官方文档就清晰了很多)

在主线发展过程中,也出现了很多支线的协程实现如 Gevent。

def foo():
    print("foo start")
    a = yield 1
    print("foo a", a)
    yield 2
    yield 3
    print("foo end")


gen = foo()
# print(gen.next())
# gen.send("a")
# print(gen.next())
# print(foo().next())
# print(foo().next())

# 在python3.x版本中,python2.x的g.next()函数已经更名为g.__next__(),使用next(g)也能达到相同效果。
# next()跟send()不同的地方是,next()只能以None作为参数传递,而send()可以传递yield的值.

print(next(gen))
print(gen.send("a"))
print(next(gen))
print(next(foo()))
print(next(foo()))

list(foo())

"""
foo start
1
foo a a
2
3
foo start
1
foo start
1
foo start
foo a None
foo end
"""

JavaScript 协程的进化

  • 同步代码
  • 异步 JavaScript: callback hell
  • ES6 引入 Promise/a+, 生成器 Generators(语法 function foo(){}* 可以赋予函数执行暂停/保存上下文/恢复执行状态的功能), 新关键词 yield 使生成器函数暂停。
  • ES7 引入 async函数/await语法糖,async 可以声明一个异步函数(将 Generator 函数和自动执行器,包装在一个函数里),此函数需要返回一个 Promise 对象。await 可以等待一个 Promise 对象 resolve,并拿到结果

Promise 中也利用了回调函数。在 then 和 catch 方法中都传入了一个回调函数,分别在 Promise 被满足和被拒绝时执行,这样就就能让它能够被链接起来完成一系列任务。

总之就是把层层嵌套的 callback 变成 .then().then()...,从而使代码编写和阅读更直观。

生成器 Generator 的底层实现机制是协程 Coroutine。

functionfoo({
    console.log("foo start")
    a = yield 1;
    console.log("foo a", a)
    yield 2;
    yield 3;
    console.log("foo end")
}

const gen = foo();
console.log(gen.next().value); // 1
// gen.send("a") // http://www.voidcn.com/article/p-syzbwqht-bvv.html SpiderMonkey引擎支持 send 语法
console.log(gen.next().value); // 2
console.log(gen.next().value); // 3
console.log(foo().next().value); // 1
console.log(foo().next().value); // 1

/*
foo start
1
foo a undefined
2
3
foo start
1
foo start
1
*/

Python 协程成熟体

可等待对象可以在 await 语句中使用,可等待对象有三种主要类型:协程(coroutine), 任务(task) 和 Future。

协程(coroutine)

  • 协程函数:定义形式为 async def 的函数;
  • 协程对象:调用 协程函数 所返回的对象
  • 旧式基于 generator(生成器)的协程

任务(Task 对象):

  • 任务 被用来“并行的”调度协程, 当一个协程通过 asyncio.create_task() 等函数被封装为一个 任务,该协程会被自动调度执行
  • Task 对象被用来在事件循环中运行协程。如果一个协程在等待一个 Future 对象,Task 对象会挂起该协程的执行并等待该 Future 对象完成。当该 Future 对象 完成,被打包的协程将恢复执行。
  • 事件循环使用协同日程调度: 一个事件循环每次运行一个 Task 对象。而一个 Task 对象会等待一个 Future 对象完成,该事件循环会运行其他 Task、回调或执行 IO 操作。
  • asyncio.Task 从 Future 继承了其除 Future.set_result() 和 Future.set_exception() 以外的所有 API。

未来对象(Future):

  • Future 对象用来链接 底层回调式代码 和高层异步/等待式代码。
  • 不用回调方法编写异步代码后,为了获取异步调用的结果,引入一个 Future 未来对象。Future 封装了与 loop 的交互行为,add_done_callback 方法向 epoll 注册回调函数,当 result 属性得到返回值后,会运行之前注册的回调函数,向上传递给 coroutine。

几种事件循环(event loop):

  • libevent/libev:Gevent(greenlet + 前期 libevent,后期 libev)使用的网络库,广泛应用;
  • tornado:tornado 框架自己实现的 IOLOOP;
  • picoev:meinheld(greenlet+picoev)使用的网络库,小巧轻量,相较于 libevent 在数据结构和事件检测模型上做了改进,所以速度更快。但从 github 看起来已经年久失修,用的人不多。
  • uvloop:Python3 时代的新起之秀。Guido 操刀打造了 asyncio 库,asyncio 可以配置可插拔的event loop,但需要满足相关的 API 要求,uvloop 继承自 libuv,将一些低层的结构体和函数用 Python 对象包装。目前 Sanic 框架基于这个库

例子

import asyncio
import time


async def exec():
    await asyncio.sleep(2)
    print('exec')

# 这种会和同步效果一直
# async def go():
#     print(time.time())
#     c1 = exec()
#     c2 = exec()
#     print(c1, c2)
#     await c1
#     await c2
#     print(time.time())

# 正确用法
async def go():
    print(time.time())
    await asyncio.gather(exec(),exec()) # 加入协程组统一调度
    print(time.time())

if __name__ == "__main__":
    asyncio.run(go())

JavaScript 协程成熟体

Promise 继续使用

Promise 本质是一个状态机,用于表示一个异步操作的最终完成 (或失败), 及其结果值。它有三个状态:

  • pending: 初始状态,既不是成功,也不是失败状态。
  • fulfilled: 意味着操作成功完成。
  • rejected: 意味着操作失败。

最终 Promise 会有两种状态,一种成功,一种失败,当 pending 变化的时候,Promise 对象会根据最终的状态调用不同的处理函数。

async、await语法糖

async、await 是对 Generator 和 Promise 组合的封装,使原先的异步代码在形式上更接近同步代码的写法,并且对错误处理/条件分支/异常堆栈/调试等操作更友好。

js 异步执行的运行机制

  1. 所有任务都在主线程上执行,形成一个执行栈。
  2. 主线程之外,还存在一个"任务队列"(task queue)。只要异步任务有了运行结果,就在"任务队列"之中放置一个事件。
  3. 一旦"执行栈"中的所有同步任务执行完毕,系统就会读取"任务队列"。那些对应的异步任务,结束等待状态,进入执行栈并开始执行。

遇到同步任务直接执行,遇到异步任务分类为宏任务(macro-task)和微任务(micro-task)。

当前执行栈执行完毕时会立刻先处理所有微任务队列中的事件,然后再去宏任务队列中取出一个事件。同一次事件循环中,微任务永远在宏任务之前执行。

例子

var sleep = function (time{
    console.log("sleep start")
    return new Promise(function (resolve, reject{
        setTimeout(function ({
            resolve();
        }, time);
    });
};

async function exec({
    await sleep(2000);
    console.log("sleep end")
}

async function go({
    console.log(Date.now())
    c1 = exec()
    console.log("-------1")
    c2 = exec()
    console.log(c1, c2)
    await c1;
    console.log("-------2")
    await c2;
    console.log(c1, c2)
    console.log(Date.now())
}

go();

event loop 将任务划分:

  • 主线程循环从"任务队列"中读取事件
  • 宏队列(macro task)js 同步执行的代码块,setTimeout、setInterval、XMLHttprequest、setImmediate、I/O、UI rendering等,本质是参与了事件循环的任务
  • 微队列(micro task)Promise、process.nextTick(node环境)、Object.observe, MutationObserver等,本质是直接在 Javascript 引擎中的执行的没有参与事件循环的任务

扩展阅读 Node.js 中的 EventLoop (http://www.ruanyifeng.com/blog/2014/10/event-loop.html)

总结与对比

说明pythonJavaScript点评
进程单进程单进程一致
中断/恢复yield,yield from,next,sendyield,next基本相同,但 JavaScript 对 send 没啥需求
未来对象(回调包装)FuturesPromise解决 callback,思路相同
生成器generatorGenerator将 yield 封装为协程Coroutine,思路一样
成熟后关键词async、awaitasync、await关键词支持,一毛一样
事件循环asyncio 应用的核心。事件循环会运行异步任务和回调,执行网络 IO 操作,以及运行子进程。asyncio 库支持的 API 较多,可控性高基于浏览器环境基本是黑盒,外部基本无法控制,对任务有做优先级分类,调度方式有区别这里有很大区别,运行环境不同,对任务的调度先后不同,Python 可能和 Node.js 关于事件循环的可比性更高些,这里还需需要继续学习

到这里就基本结束了,看完不知道你会有什么感想,如有错误还请不吝赐教。




推荐阅读:

入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python  | 实战项目 |学Python就是这条捷径


干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 |   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影


趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!


AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影


小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!


年度爆款文案


点阅读原文,领AI全套资料

浏览 18
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报