韩信大招:一致性哈希!

JavaGuide

共 2924字,需浏览 6分钟

 ·

2021-03-29 11:43

韩信点兵的成语来源淮安民间传说。常与多多益善搭配。寓意越多越好。我们来看下主公刘邦和韩信大将军的对话。

刘邦:“你觉得我可以带兵多少?”

韩信:“最多十万。”

刘邦不解的问:“那你呢?”

韩信自豪地说:“越多越好,多多益善嘛!

假如刘邦现在给了韩信一千个士兵,需要大致均匀分成三组。士兵的编号是六位数,从 1-100000 随机分配。比如第一个士兵的值是 245,第二个士兵的编号是 82593,其他士兵类似。那么如何对士兵进行分配呢?

刘邦:韩将军,你看这些士兵怎么分配好呢?

韩信:这还不简单,我的一技能就能搞定。

一技能:哈希算法

分组

韩信的一技能哈希算法:将士兵的编号 num 值当做一个哈希值,再和总做小组数 N 做取余操作,得出的结果在 0 到 N - 1 之间,这个士兵就属于那个组。

如下图所示,每来一个士兵都有一个六位的 hash 值(也可以称作编号),然后被韩信用除以 3 取余数的方式分配到三个组。比如第一组中的编号为 123456 的士兵,除以 3 之后,整除,余数为 0,所以分配到第一组。

哈希算法

查找士兵

现在已经分好组了,假如想找到编号为 666666 的士兵该怎么找?首先将 666666 除以 3,得到余数 0,说明在第一个组,然后去第一个组里面找就可以了。

这里有小伙伴可能会问,为什么不是把所有士兵放到一个组?

因为一个组太大了,影响行军速度。映射到互联网架构中,就是通过增加节点从而减小单节点的负载压力。

哈希分组弊端

刘邦看了这个一技能后,大呼:

韩将军真是厉害。

哈希算法看起来很完美,那我再给你五百士兵,需要分成四个组怎么办?

这时,韩信的副将说话了:

这还不简单,再用 4 取余不就好了吗?

刘邦摸着下巴思索片刻后,对副将说:

这个方案可行,但很多士兵都被重新分组了,刚刚建立的团队友情就被分解了。

我们来看下刘邦为什么觉得方案不可行。

比如原来分配到一组的编号为 3 的士兵,当分成四组的时候,通过公式计算:3%4=3,所以会分配到到第四组。

依次类推,会发现很多士兵进行了重新分配,只有小部分不会变换分组,比如 1,2,12 不会被重新分组。

韩信对着刘邦点点头,对着主公说道:

主公,您说得没错,这就是我的一技能的弱点所在。

不过我还有一个技能:一致性哈希

二技能:一致性哈希

哈希环

一致性哈希算法也用了取模运算,但是它与哈希算法不同的地方:

  • 哈希算法:对节点的数量进行取模运算。
  • 一致性哈希算法:对 2^32 进行取模运算。

可以想象一下,一致性哈希算法,是将整个哈希值空间组成了一个虚拟的圆环,也就是哈希环

如下图,把 3 个组映射到固定大小为 2^32 的哈希环中。三个组一共将整个环分成了三个区域,C-A(第一组)、A-B(第二组)、B-C(第三组)。如下图所示:

分成三组
  • 第一组负责存储落在 C-A 区间内的数据。

  • 第二组负责存储落在 A-B 区间内的数据。

  • 第三组负责存储落在 B-C 区间内的数据。

士兵分配

假定编号为 9527 的士兵,进行哈希运算后,落到 C-A 区域。如下图所示:

士兵所站位置

第二步,让这个士兵顺时针往前走,遇到的第一个节点 A 就是他所在的组了。如下图所示:

顺时针遇到第一个节点

增加分组

目前三个节点的时候,假定编号为 89757 的士兵经过哈希运算后,分配到了 B-C 区域(第三组),也就是属于 C 节点管控。如下图所示:

属于 C 节点

回到刘邦刚问的问题,如果分组变成四组,该怎么进行士兵分配。

如下图所示,增加一个节点 D,原来的区域 B-C 变成了区域 B-D(第三组) 和 D-C(第四组)。

增加 D 节点

那么这名士兵属于哪个节点管控呢?如下图所示,士兵顺时针往前走,先走到了 D 节点,所以属于 D 节点管控。虽然还是属于第三组,但是这名士兵的领导者已经变了:由 C 变成了 D

领导者变了

从上面的变化来看,只有 B-C 区域中的部分数据会进行迁移:B-D 之间的数据会由 C 节点迁移到 D 节点。

其他数据不受影响,也不用进行迁移。而且节点越多,需要迁移的数据就越少。这就是多多益善了~

刘邦看了后,大赞韩信:

不亏是大将军,萧何当时月下追你,值了!

哈希环缺陷

萧何看了韩信画的哈希环后,觉得有些不对劲,思索片刻后,对韩信说:

将军,你这个哈希环上的节点分布不太均匀啊,你看第三组和第四组的的区域好小啊。

萧何说得没错,确实存在这个问题,放到互联网架构中,就存在如下问题:

节点分布不均匀,导致业务对节点的访问冷热不均

韩信眼中充满着赞赏,知我者莫若萧何。然后胸有成竹地说道:

你说得没错,不过我还有一个技能,虚拟节点映射

三技能:虚拟节点

一般虚拟节点比物理节点要多,并相对均匀地分布在哈希环上。如下图所示,12 个虚拟节点 N1~N12,相对均匀地分布在虚拟节点上。如果有士兵属于 N2/N3/N4 中的某一个,都会重新映射到 A 节点,依次类推,N5/N6/N7 属于 B 节点的虚拟节点映射。

虚拟节点

我们来看下萧何的提出的问题,真实的 B-D 区域比较小,用虚拟节点后,N5/N6/N7 属于 B 节点,N8/N9/N10 属于 D 节点,他们分到的虚拟节点一样多,而且区域大致相等。所以士兵的分配也比较均匀。

萧何看了韩信的三技能后,直呼:妙哉妙哉!

总结

本篇通过韩信点兵的故事,然后从故事中衍生出刘邦、韩信、萧何的对话,来讲解士兵的分组的问题。现在对故事中的知识点做一个总结:

  • 哈希算法会带来增加或删除节点时,数据迁移量太大的问题。
  • 一致性哈希算法降低了数据迁移量。
  • 节点较少,哈希环上每个节点实际占据的区间大小不一,最终导致业务对节点的访问冷热不均
  • 引入虚拟节点映射解决了分布不均问题。
  • 节点越多时,使用哈希算法时,需要迁移的数据就越多,而使用一致性哈希算法,迁移的数据就越少
  • 一致性哈希算法本质上是一种路由寻址算法,适合简单的路由寻址场景。
  • 一致性哈希算法常用在负载均衡的架构设计中。

欢迎加入我的星球,一个纯 Java 面试交流圈子 !Ready!。目前星球已经更新 3 个原创小册:《Java面试进阶指北》《从零开始写一个 RPC 框架》 、《程序员副业赚钱之路》累计帮助 520+ 位球友提供了免费的简历修改服务,回答了 500+ 个问题,产出了 1300+ 个主题。

推荐👍 :1049天,100K!简单复盘!

推荐👍 :汇报一下2020的工作

推荐👍 :Github掘金计划:Github上的一些优质项目搜罗

我是 Guide哥,拥抱开源,喜欢烹饪。Github 接近 10w 点赞的开源项目 JavaGuide 的作者。未来几年,我希望持续完善 JavaGuide,争取能够帮助更多学习 Java 的小伙伴!共勉!凎!
原创不易,欢迎点赞分享。咱们下期再会!
浏览 35
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报