1次订单事故,扣了我3个月绩效!

程序IT圈

共 15121字,需浏览 31分钟

 ·

2021-04-06 11:34

去年年底的时候,我们线上出了一次事故。


图片来自 Pexels

这个事故的表象是这样的:系统出现了两个一模一样的订单号,订单的内容却不是不一样的,而且系统在按照订单号查询的时候一直抛错,也没法正常回调,而且事情发生的不止一次,所以 这次系统升级一定要解决掉。


经手的同事之前也改过几次,不过效果始终不好:总会出现订单号重复的问题, 所以趁着这次问题我好好的理了一下我同事写的代码。


这里简要展示下当时的代码:

      /**
       * OD单号生成
       * 订单号生成规则:OD + yyMMddHHmmssSSS + 5位数(商户ID3位+随机数2位) 22位
       */

      public static String getYYMMDDHHNumber(String merchId){
          StringBuffer orderNo = new StringBuffer(new SimpleDateFormat("yyMMddHHmmssSSS").format(new Date()));
          if(StringUtils.isNotBlank(merchId)){
              if(merchId.length()>3){
                  orderNo.append(merchId.substring(0,3));
              }else {
                  orderNo.append(merchId);
              }
          }
          int orderLength = orderNo.toString().length();
          String randomNum = getRandomByLength(20-orderLength);
          orderNo.append(randomNum);
          return orderNo.toString();
      }


      /** 生成指定位数的随机数 **/
      public static String getRandomByLength(int size){
          if(size>8 || size<1){
              return "";
          }
          Random ne = new Random();
          StringBuffer endNumStr = new StringBuffer("1");
          StringBuffer staNumStr = new StringBuffer("9");
          for(int i=1;i<size;i++){
              endNumStr.append("0");
              staNumStr.append("0");
          }
          int randomNum = ne.nextInt(Integer.valueOf(staNumStr.toString()))+Integer.valueOf(endNumStr.toString());
          return String.valueOf(randomNum);
      }

可以看到,这段代码写的其实不怎么好,代码部分暂且不议,代码中使订单号不重复的主要因素点是随机数和毫秒,可是这里的随机数只有两位。


在高并发环境下极容易出现重复问题,同时毫秒这一选择也不是很好,在多核 CPU 多线程下,一定时间内(极小的)这个毫秒可以说是固定不变的(测试验证过)。


所以这里我先以 100 个并发测试下这个订单号生成,关注微信订阅号码匠笔记,回复架构获取一些列的架构知识。


测试代码如下:

    public static void main(String[] args) {
        final String merchId = "12334";
        List<String> orderNos = Collections.synchronizedList(new ArrayList<String>());
        IntStream.range(0,100).parallel().forEach(i->{
            orderNos.add(getYYMMDDHHNumber(merchId));
        });

        List<String> filterOrderNos = orderNos.stream().distinct().collect(Collectors.toList());

        System.out.println("生成订单数:"+orderNos.size());
        System.out.println("过滤重复后订单数:"+filterOrderNos.size());
        System.out.println("重复订单数:"+(orderNos.size()-filterOrderNos.size()));
    }

果然,测试的结果如下:

生成订单数:100
过滤重复后订单数:87
重复订单数:13

当时我就震惊了,一百个并发里面竟然有 13 个重复的!!!我赶紧让同事先不要发版,这活儿我接了!


对这一烫手的山竽拿到手里没有一个清晰的解决方案可是不行的,我大概花了 6 分多钟和同事商量了下业务场景。


最后决定做如下更改:

  • 去掉商户 ID 的传入(按同事的说法,传入商户 ID 也是为了防止重复订单的,事实证明并没有叼用)

  • 毫秒仅保留三位(缩减长度同时保证应用切换不存在重复的可能)

  • 使用线程安全的计数器做数字递增(三位数最低保证并发 800 不重复,代码中我给了 4 位)

  • 更换日期转换为 java8 的日期类以格式化(线程安全及代码简洁性考量)


经过以上思考后我的最终代码是:

    /** 订单号生成(NEW) **/
    private static final AtomicInteger SEQ = new AtomicInteger(1000);
    private static final DateTimeFormatter DF_FMT_PREFIX = DateTimeFormatter.ofPattern("yyMMddHHmmssSS");
    private static ZoneId ZONE_ID = ZoneId.of("Asia/Shanghai");
    public static String generateOrderNo(){
        LocalDateTime dataTime = LocalDateTime.now(ZONE_ID);
        if(SEQ.intValue()>9990){
            SEQ.getAndSet(1000);
        }
        return  dataTime.format(DF_FMT_PREFIX)+SEQ.getAndIncrement();
    }

当然代码写完成了可不能这么随随便便结束了,现在得走一个测试 main 函数看看:

    public static void main(String[] args{

        List<String> orderNos = Collections.synchronizedList(new ArrayList<String>());
        IntStream.range(0,8000).parallel().forEach(i->{
            orderNos.add(generateOrderNo());
        });

        List<String> filterOrderNos = orderNos.stream().distinct().collect(Collectors.toList());

        System.out.println("生成订单数:"+orderNos.size());
        System.out.println("过滤重复后订单数:"+filterOrderNos.size());
        System.out.println("重复订单数:"+(orderNos.size()-filterOrderNos.size()));
    }

    /**
        测试结果: 
        生成订单数:8000
        过滤重复后订单数:8000
        重复订单数:0
    **/


真好,一次就成功了,可以直接上线了。。。


然而,我回过头来看以上代码,虽然最大程度解决了并发单号重复的问题,不过对于我们的系统架构还是有一个潜在的隐患。


如果当前应用有多个实例(集群)难道就没有重复的可能了?鉴于此问题就必然需要一个有效的解决方案,所以这时我就思考:多个实例应用订单号如何区分开呢?


以下为我思考的大致方向:

  • 使用 UUID(在第一次生成订单号时初始化一个)

  • 使用 Redis 记录一个增长 ID

  • 使用数据库表维护一个增长 ID

  • 应用所在的网络 IP

  • 应用所在的端口号

  • 使用第三方算法(雪花算法等等)

  • 使用进程 ID(某种程度下是一个可行的方案)


在此我想了下,我们的应用是跑在 Docker 里面,而且每个 Docker 容器内的应用端口都一样,不过网路 IP 不会存在重复的问题,至于进程也有存在重复的可能,对于 UUID 的方式之前吃过亏。


总之吧,Redis 或 DB 也算是一种比较好的方式,不过独立性较差。。。


同时还有一个因素也很重要,就是所有涉及到订单号生成的应用都是在同一台宿主机(Linux 实体服务器)上, 所以就目前的系统架构我选用了 IP 的方式。


以下是我的代码:

import org.apache.commons.lang3.RandomUtils;

import java.net.InetAddress;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

public class OrderGen2Test {

    /** 订单号生成 **/
    private static ZoneId ZONE_ID = ZoneId.of("Asia/Shanghai");
    private static final AtomicInteger SEQ = new AtomicInteger(1000);
    private static final DateTimeFormatter DF_FMT_PREFIX = DateTimeFormatter.ofPattern("yyMMddHHmmssSS");
    public static String generateOrderNo(){
        LocalDateTime dataTime = LocalDateTime.now(ZONE_ID);
        if(SEQ.intValue()>9990){
            SEQ.getAndSet(1000);
        }
        return  dataTime.format(DF_FMT_PREFIX)+ getLocalIpSuffix()+SEQ.getAndIncrement();
    }

    private volatile static String IP_SUFFIX = null;
    private static String getLocalIpSuffix (){
        if(null != IP_SUFFIX){
            return IP_SUFFIX;
        }
        try {
            synchronized (OrderGen2Test.class){
                if(null != IP_SUFFIX){
                    return IP_SUFFIX;
                }
                InetAddress addr = InetAddress.getLocalHost();
                //  172.17.0.4  172.17.0.199 ,
                String hostAddress = addr.getHostAddress();
                if (null != hostAddress && hostAddress.length() > 4) {
                    String ipSuffix = hostAddress.trim().split("\\.")[3];
                    if (ipSuffix.length() == 2) {
                        IP_SUFFIX = ipSuffix;
                        return IP_SUFFIX;
                    }
                    ipSuffix = "0" + ipSuffix;
                    IP_SUFFIX = ipSuffix.substring(ipSuffix.length() - 2);
                    return IP_SUFFIX;
                }
                IP_SUFFIX = RandomUtils.nextInt(1020) + "";
                return IP_SUFFIX;
            }
        }catch (Exception e){
            System.out.println("获取IP失败:"+e.getMessage());
            IP_SUFFIX =  RandomUtils.nextInt(10,20)+"";
            return IP_SUFFIX;
        }
    }


    public static void main(String[] args) {
        List<String> orderNos = Collections.synchronizedList(new ArrayList<String>());
        IntStream.range(0,8000).parallel().forEach(i->{
            orderNos.add(generateOrderNo());
        });

        List<String> filterOrderNos = orderNos.stream().distinct().collect(Collectors.toList());

        System.out.println("订单样例:"+ orderNos.get(22));
        System.out.println("生成订单数:"+orderNos.size());
        System.out.println("过滤重复后订单数:"+filterOrderNos.size());
        System.out.println("重复订单数:"+(orderNos.size()-filterOrderNos.size()));
    }
}

/**
  订单样例:20082115575546011022
  生成订单数:8000
  过滤重复后订单数:8000
  重复订单数:0
**/

最后,代码说明及几点建议:

  • generateOrderNo() 方法内不需要加锁,因为 AtomicInteger 内使用的是 CAS 自旋转锁(保证可见性的同时也保证原子性,具体的请自行了解)

  • getLocalIpSuffix() 方法内不需要对不为 null 的逻辑加同步锁(双向校验锁,整体是一种安全的单例模式)

  • 本人实现的方式并不是解决问题的唯一方式,具体解决问题需要视当前系统架构具体而论

  • 任何测试都是必要的,我同事在前几次尝试解决这个问题后都没有自测,不测试有损开发专业性!


作者:funnyZpC

出处:cnblogs.com/funnyzpc/p/13541713.html


················· END ·················


长按进入小程序,进行打卡签到

新一期打卡签到,奖品超多


(更多精彩值得期待……)

最近热文:
一周内被程序员疯转5.6W次,最终被大厂封杀!
字节跳动《算法中文手册》火了,完整版 PDF 开放下载!
改个圆角200万?原研哉是怎么“说服”小米的?
Kubernetes部署MySQL主从服务
程序员 从 幼稚 到 成熟
LeetCode1-220题汇总,希望对你有点帮助!

2T技术资源大放送!包括但不限于:C/C++,Linux,Python,Java,人工智能,考研,软考,英语,等等。在公众号内回复「资源」,即可免费获取!回复「社群」,可以邀请你加入读者群!


❤️给个「在看」,是对我最大的支持❤️

浏览 26
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报