本地IDEA提交Flink/Spark任务到集群的工具
支持Flink yarnPerJob、Standalone 、yarnSession模式下的任务提交。 支持Spark任务以Yarn Cluster模式提交到YARN,支持自动上传用户Jar包,依赖的Spark Jars需要提前上传到HDFS。 支持Spark任务提交到K8s Cluster,执行的jar需要包含在镜像中,任务执行时需要传递镜像名称及可执行文件路径。如果需要操作hive表,则需要传递集群所在文件夹,以及HADOOP_USER_NAME,系统进行Hadoop文件的挂载及环境变量的设置。
Flink 多执行模式任务提交
需要填写Flink任务运行时参数配置,任务运行所在的集群配置路径,本地Flink根路径。项目依赖flink1.10版本。 支持以YarnSession、YarnPerjob、Standalone模式进行任务提交,返回ApplicationId。 example模块下包含一个FlinkDemo,打包后会转移到项目的examplJars中,可以尝试进行任务提交。 任务提交后,根据ApplicationId获取任务执行使用的jm、tm日志基本信息,包含日志访问URL,日志总字节大小,根据日志基本信息可以做日志滚动展示,防止Yarn日志过大导致日志读取卡死。
// 可执行jar包路径String runJarPath = "/Users/maqi/code/ClustersSubmiter/exampleJars/flink-kafka-reader/flink-kafka-reader.jar";// 任务参数String[] execArgs = new String[]{"-jobName", "flink110Submit", "--topic", "mqTest01", "--bootstrapServers", "172.16.8.107:9092"};// 任务名称String jobName = "Flink perjob submit";// flink 文件夹路径String flinkConfDir = "/Users/maqi/tmp/flink/flink-1.10.0/conf";// flink lib包路径String flinkJarPath = "/Users/maqi/tmp/flink/flink-1.10.0/lib";// yarn 文件夹路径// String yarnConfDir = "/Users/maqi/tmp/hadoopconf";String yarnConfDir = "/Users/maqi/tmp/hadoopconf";// 作业依赖的外部文件,例如:udf jar , keytabString[] dependFile = new String[]{"/Users/maqi/tmp/flink/flink-1.10.0/README.txt"};// 任务提交队列String queue = "root.users.hdfs";// flink任务执行模式String execMode = "yarnPerjob";// yarnsession appid配置Properties yarnSessionConfProperties = null;// savepoint 及并行度相关Properties confProperties = new Properties();confProperties.setProperty("parallelism", "1");JobParamsInfo jobParamsInfo = JobParamsInfo.builder().setExecArgs(execArgs).setName(jobName).setRunJarPath(runJarPath).setDependFile(dependFile).setFlinkConfDir(flinkConfDir).setYarnConfDir(yarnConfDir).setConfProperties(confProperties).setYarnSessionConfProperties(yarnSessionConfProperties).setFlinkJarPath(flinkJarPath).setQueue(queue).build();String applicationId = runFlinkJob(jobParamsInfo, execMode);//任务启动后,拉取jm,tm日志相关信息。Thread.sleep(20000);ListlogsInfo = new RunningLog().getRollingLogBaseInfo(jobParamsInfo, applicationId); logsInfo.forEach(System.out::println);
{"logs":[{"name":"jobmanager.err ","totalBytes":"555","url":"http://172-16-10-204:8042/node/containerlogs/container_e185_1593317332045_2246_01_000002/admin/jobmanager.err/"},{"name":"jobmanager.log ","totalBytes":"31944","url":"http://172-16-10-204:8042/node/containerlogs/container_e185_1593317332045_2246_01_000002/admin/jobmanager.log/"},{"name":"jobmanager.out ","totalBytes":"0","url":"http://172-16-10-204:8042/node/containerlogs/container_e185_1593317332045_2246_01_000002/admin/jobmanager.out/"}],"typeName":"jobmanager"}
{"logs":[{"name":"taskmanager.err ","totalBytes":"560","url":"http://node03:8042/node/containerlogs/container_e27_1593571725037_0170_01_000002/admin/taskmanager.err/"},{"name":"taskmanager.log ","totalBytes":"35937","url":"http://node03:8042/node/containerlogs/container_e27_1593571725037_0170_01_000002/admin/taskmanager.log/"},{"name":"taskmanager.out ","totalBytes":"0","url":"http://node03:8042/node/containerlogs/container_e27_1593571725037_0170_01_000002/admin/taskmanager.out/"}],"otherInfo":"{"dataPort":36218,"freeSlots":0,"hardware":{"cpuCores":4,"freeMemory":241172480,"managedMemory":308700779,"physicalMemory":8201641984},"id":"container_e27_1593571725037_0170_01_000002","path":"akka.tcp://flink@node03:36791/user/taskmanager_0","slotsNumber":1,"timeSinceLastHeartbeat":1593659561129}","typeName":"taskmanager"}
Spark on yarn 任务提交
填写用户程序包路径、执行参数、集群配置文件夹、安全认证等相关配置。 Spark任务提交使用Yarn cluster模式,使用的Spark Jar需要提前上传到HDFS并作为archive的参数。 针对SparkSQL任务,通过提交examples中的spark-sql-proxy程序包来直接操作hive表。
public static void main(String[] args) throws Exception {boolean openKerberos = true;String appName = "todd spark submit";String runJarPath = "/Users/maqi/code/ClustersSubmiter/exampleJars/spark-sql-proxy/spark-sql-proxy.jar";String mainClass = "cn.todd.spark.SparksqlProxy";String yarnConfDir = "/Users/maqi/tmp/hadoopconf";String principal = "hdfs/node1@DTSTACK.COM";String keyTab = "/Users/maqi/tmp/hadoopconf/hdfs.keytab";String jarHdfsDir = "sparkproxy2";String archive = "hdfs://nameservice1/sparkjars/jars";String queue = "root.users.hdfs";String execArgs = getExampleJobParams();Properties confProperties = new Properties();confProperties.setProperty("spark.executor.cores","2");JobParamsInfo jobParamsInfo = JobParamsInfo.builder().setAppName(appName).setRunJarPath(runJarPath).setMainClass(mainClass).setYarnConfDir(yarnConfDir).setPrincipal(principal).setKeytab(keyTab).setJarHdfsDir(jarHdfsDir).setArchivePath(archive).setQueue(queue).setExecArgs(execArgs).setConfProperties(confProperties).setOpenKerberos(BooleanUtils.toString(openKerberos, "true", "false")).build();YarnConfiguration yarnConf = YarnConfLoaderUtil.getYarnConf(yarnConfDir);String applicationId = "";if (BooleanUtils.toBoolean(openKerberos)) {UserGroupInformation.setConfiguration(yarnConf);UserGroupInformation userGroupInformation = UserGroupInformation.loginUserFromKeytabAndReturnUGI(principal, keyTab);applicationId = userGroupInformation.doAs((PrivilegedExceptionAction) () -> LauncherMain.run(jobParamsInfo, yarnConf)); } else {LauncherMain.run(jobParamsInfo, yarnConf);}System.out.println(applicationId);}
Spark on k8s 任务提交
基于Spark2.4.4进行开发,通过将spark-sql-proxy.jar包打入镜像来执行Sparksql并操作Hive表,无其他特殊操作。 操作Hive时需要传递hadoopConfDir,程序会自动将.xml文件内容进行挂载,如果非root用户操作Hive,需要设置HADOOP_USER_NAME。 通过读取kubeConfig配置文件进行Kuberclient的创建,而非官方提供的master url方式。 任务提交后立即返回spark-app-selector id,从而进行POD状态获取。
public static void main(String[] args) throws Exception {String appName = "todd spark submit";// 镜像内的jar路径String runJarPath = "local:///opt/dtstack/spark/spark-sql-proxy.jar";String mainClass = "cn.todd.spark.SparksqlProxy";String hadoopConfDir = "/Users/maqi/tmp/hadoopconf/";String kubeConfig = "/Users/maqi/tmp/conf/k8s.config";String imageName = "mqspark:2.4.4";String execArgs = getExampleJobParams();Properties confProperties = new Properties();confProperties.setProperty("spark.executor.instances", "2");confProperties.setProperty("spark.kubernetes.namespace", "default");confProperties.setProperty("spark.kubernetes.authenticate.driver.serviceAccountName", "spark");confProperties.setProperty("spark.kubernetes.container.image.pullPolicy", "IfNotPresent");JobParamsInfo jobParamsInfo = JobParamsInfo.builder().setAppName(appName).setRunJarPath(runJarPath).setMainClass(mainClass).setExecArgs(execArgs).setConfProperties(confProperties).setHadoopConfDir(hadoopConfDir).setKubeConfig(kubeConfig).setImageName(imageName).build();String id = run(jobParamsInfo);System.out.println(id);}
评论
