卷起来了,写了一套Tensorflow和Pytorch的学习笔记(20G/代码/PPT/视频)
作为一名AI工程师,掌握一门深度学习框架是必备的生存技能之一。
谷歌的 Tensorflow 与 Facebook 的 PyTorch 一直是颇受社区欢迎的两种深度学习框架。
我们通过调研发现,80%的0-3岁互联网人没有系统的学习过Tensorflow、PyTorch方向,缺乏项目实战,处于比较浅层面的对比。
网上相关介绍也很多,但很多技术内容太少,或是写的不全面半懂不懂,重复内容占绝大多数(这里弱弱吐槽百度的搜索结果多样化)。同质性的教程有一份就够,注意筛选,不要浪费不必要的时间。
最近整理一套深度学习框架必备的学习资料,强烈推荐大家学习,作者王小天,拥有8年人工智能领域实战经验,目前就职于BAT之一,AI算法高级技术专家,法国TOP3高校双硕(计算机科学和数学应用双硕士)毕业。
他在人工智能和芯片领域发表10余篇论文,具有深厚的学术背景和丰富的项目及业务落地经验。工作期间主要负责人工智能业务线CV与NLP相关算法工作,推进人机混合智能、语义分割、机器翻译、虹膜识别等模块的核心算法研究与优化。对图像分类、物体检测、目标跟踪、自动驾驶、计算机体系结构等有深入的研究。
他兼具理论与实战落地经验,深知初学者学习痛点。说实话,这样资历的人,很难得。
深度学习与神经网络
深度学习简介
基本的深度学习架构
神经元
激活函数详解(sigmoid、tanh、relu等)
感性认识隐藏层
如何定义网络层
损失函数
推理和训练
神经网络的推理和训练
bp算法详解
归一化
Batch Normalization详解
解决过拟合
dropout
softmax
手推神经网络的训练过程
从零开始训练神经网络
使用python从零开始实现神经网络训练
构建神经网络的经验总结
深度学习开源框架
pytorch
tensorflow
caffe
mxnet
keras
优化器详解(GD,SGD,RMSprop等
课程通过讲解和实战操作,带你从零开始训练网络,做到独立搭建和设计卷积神经网络(包括主流分类和检测网络),并进行神经网络的训练和推理(涉及PyTorch、Tensorflow、Caffe、Mxnet等多个主流框架),通过实战让你掌握各种深度学习开源框架。
所有以上相关的的内容全部都已经打包好了,汇总成了一份百度云的链接,小贴心之处是怕有的兄弟没有买百度云会员的朋友,能用2MB+/S的速度下载,还特地给大家准备了下载工具。