非常适合小白的 Asyncio 教程

共 5501字,需浏览 12分钟

 ·

2020-11-30 13:51

原文:https://segmentfault.com/a/1190000008814676

所谓「异步 IO」,就是你发起一个 IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知。

Asyncio 是并发(concurrency)的一种方式。对 Python 来说,并发还可以通过线程(threading)和多进程(multiprocessing)来实现。

Asyncio 并不能带来真正的并行(parallelism)。当然,因为 GIL(全局解释器锁)的存在,Python 的多线程也不能带来真正的并行。

可交给 asyncio 执行的任务,称为协程(coroutine)。一个协程可以放弃执行,把机会让给其它协程(即 yield fromawait)。

1. 定义协程

协程的定义,需要使用 async def 语句。

async def do_some_work(x): pass

do_some_work 便是一个协程。
准确来说,do_some_work 是一个协程函数,可以通过 asyncio.iscoroutinefunction 来验证:

print(asyncio.iscoroutinefunction(do_some_work)) # True

这个协程什么都没做,我们让它睡眠几秒,以模拟实际的工作量 :

async def do_some_work(x):
    print("Waiting " + str(x))
    await asyncio.sleep(x)

在解释 await 之前,有必要说明一下协程可以做哪些事。协程可以:

  • 等待一个 future 结束

  • 等待另一个协程(产生一个结果,或引发一个异常)

  • 产生一个结果给正在等它的协程

  • 引发一个异常给正在等它的协程

asyncio.sleep 也是一个协程,所以 await asyncio.sleep(x) 就是等待另一个协程。可参见 asyncio.sleep 的文档:

sleep(delay, result=None, *, loop=None)
Coroutine that completes after a given time (in seconds).

2. 运行协程

调用协程函数,协程并不会开始运行,只是返回一个协程对象,可以通过 asyncio.iscoroutine 来验证:

print(asyncio.iscoroutine(do_some_work(3))) # True

此处还会引发一条警告:

async1.py:16: RuntimeWarning: coroutine 'do_some_work' was never awaited
  print(asyncio.iscoroutine(do_some_work(3)))

要让这个协程对象运行的话,有两种方式:

  • 在另一个已经运行的协程中用 await 等待它

  • 通过 ensure_future 函数计划它的执行

简单来说,只有 loop 运行了,协程才可能运行。
下面先拿到当前线程缺省的 loop ,然后把协程对象交给 loop.run_until_complete,协程对象随后会在 loop 里得到运行。

loop = asyncio.get_event_loop()
loop.run_until_complete(do_some_work(3))

run_until_complete 是一个阻塞(blocking)调用,直到协程运行结束,它才返回。这一点从函数名不难看出。
run_until_complete 的参数是一个 future,但是我们这里传给它的却是协程对象,之所以能这样,是因为它在内部做了检查,通过 ensure_future 函数把协程对象包装(wrap)成了 future。所以,我们可以写得更明显一些:

loop.run_until_complete(asyncio.ensure_future(do_some_work(3)))

完整代码:

import asyncio

async def do_some_work(x):
    print("Waiting " + str(x))
    await asyncio.sleep(x)

loop = asyncio.get_event_loop()
loop.run_until_complete(do_some_work(3))

运行结果:

Waiting 3
<三秒钟后程序结束>

3. 回调函数

假如协程是一个 IO 的读操作,等它读完数据后,我们希望得到通知,以便下一步数据的处理。这一需求可以通过往 future 添加回调来实现。

def done_callback(futu):
    print('Done')

futu = asyncio.ensure_future(do_some_work(3))
futu.add_done_callback(done_callback)

loop.run_until_complete(futu)

4. 多个协程

实际项目中,往往有多个协程,同时在一个 loop 里运行。为了把多个协程交给 loop,需要借助 asyncio.gather 函数。

loop.run_until_complete(asyncio.gather(do_some_work(1), do_some_work(3)))

或者先把协程存在列表里:

coros = [do_some_work(1), do_some_work(3)]
loop.run_until_complete(asyncio.gather(*coros))

运行结果:

Waiting 3
Waiting 1
<等待三秒钟>
Done

这两个协程是并发运行的,所以等待的时间不是 1 + 3 = 4 秒,而是以耗时较长的那个协程为准。

参考函数 gather 的文档:

gather(*coros_or_futures, loop=None, return_exceptions=False)
Return a future aggregating results from the given coroutines or futures.

发现也可以传 futures 给它:

futus = [asyncio.ensure_future(do_some_work(1)),
             asyncio.ensure_future(do_some_work(3))]

loop.run_until_complete(asyncio.gather(*futus))

gather 起聚合的作用,把多个 futures 包装成单个 future,因为 loop.run_until_complete 只接受单个 future。

5. run_until_complete和run_forever

我们一直通过 run_until_complete 来运行 loop ,等到 future 完成,run_until_complete 也就返回了。

async def do_some_work(x):
    print('Waiting ' + str(x))
    await asyncio.sleep(x)
    print('Done')

loop = asyncio.get_event_loop()

coro = do_some_work(3)
loop.run_until_complete(coro)

输出:

Waiting 3
<等待三秒钟>
Done
<程序退出>

现在改用 run_forever

async def do_some_work(x):
    print('Waiting ' + str(x))
    await asyncio.sleep(x)
    print('Done')

loop = asyncio.get_event_loop()

coro = do_some_work(3)
asyncio.ensure_future(coro)

loop.run_forever()

输出:

Waiting 3
<等待三秒钟>
Done
<程序没有退出>

三秒钟过后,future 结束,但是程序并不会退出。run_forever 会一直运行,直到 stop 被调用,但是你不能像下面这样调 stop

loop.run_forever()
loop.stop()

run_forever 不返回,stop 永远也不会被调用。所以,只能在协程中调 stop

async def do_some_work(loop, x):
    print('Waiting ' + str(x))
    await asyncio.sleep(x)
    print('Done')
    loop.stop()

这样并非没有问题,假如有多个协程在 loop 里运行:

asyncio.ensure_future(do_some_work(loop1))
asyncio.ensure_future(do_some_work(loop3))

loop.run_forever()

第二个协程没结束,loop 就停止了——被先结束的那个协程给停掉的。
要解决这个问题,可以用 gather 把多个协程合并成一个 future,并添加回调,然后在回调里再去停止 loop。

async def do_some_work(loop, x):
    print('Waiting ' + str(x))
    await asyncio.sleep(x)
    print('Done')

def done_callback(loop, futu):
    loop.stop()

loop = asyncio.get_event_loop()

futus = asyncio.gather(do_some_work(loop1), do_some_work(loop3))
futus.add_done_callback(functools.partial(done_callback, loop))

loop.run_forever()

其实这基本上就是 run_until_complete 的实现了,run_until_complete 在内部也是调用 run_forever

6. Close Loop?

以上示例都没有调用 loop.close,好像也没有什么问题。所以到底要不要调 loop.close 呢?
简单来说,loop 只要不关闭,就还可以再运行。:

loop.run_until_complete(do_some_work(loop1))
loop.run_until_complete(do_some_work(loop3))
loop.close()

但是如果关闭了,就不能再运行了:

loop.run_until_complete(do_some_work(loop1))
loop.close()
loop.run_until_complete(do_some_work(loop3))  # 此处异常

建议调用 loop.close,以彻底清理 loop 对象防止误用。

7. gather 和 wait

asyncio.gatherasyncio.wait 功能相似。

coros = [do_some_work(loop1), do_some_work(loop3)]
loop.run_until_complete(asyncio.wait(coros))

具体差别可请参见 StackOverflow 的讨论:Asyncio.gather vs asyncio.wait。

8. Timer

C++ Boost.Asio 提供了 IO 对象 timer,但是 Python 并没有原生支持 timer,不过可以用 asyncio.sleep 模拟。

async def timer(x, cb):
    futu = asyncio.ensure_future(asyncio.sleep(x))
    futu.add_done_callback(cb)
    await futu

t = timer(3lambda futu: print('Done'))
loop.run_until_complete(t)

程序员GitHub,现已正式上线!


接下来我们将会在该公众号上,专注为大家分享GitHub上有趣的开源库包括Python,Java,Go,前端开发等优质的学习资源和技术,分享一些程序员圈的新鲜趣事。



推荐阅读:


这个GitHub 1400星的Git魔法书火了,斯坦福校友出品丨有中文版
贼 TM 好用的 Java 工具类库
超全Python IDE武器库大总结,优缺点一目了然!
秋招来袭!GitHub28.5颗星!这个汇聚阿里,腾讯,百度,美团,头条的面试题库必须安利!
收获10400颗星!这个Python库有点黑科技,竟然可以伪造很多'假'的数据!
牛掰了!这个Python库有点逆天了,竟然能把图片,视频无损清晰放大!


点这里,获取一大波福利

浏览 31
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报