请勿过度依赖Redis的过期监听

路人甲Java

共 6647字,需浏览 14分钟

 ·

2020-12-24 22:43



作者:迪壳

https://juejin.im/post/6844904158227595271

Redis 过期监听场景

业务中有类似等待一定时间之后执行某种行为的需求 , 比如 30 分钟之后关闭订单 . 网上有很多使用 Redis 过期监听的 Demo , 但是其实这是个大坑 , 因为 Redis 不能确保 key 在指定时间被删除 , 也就造成了通知的延期 . 不多说 , 跑个测试

测试情况

先说环境 , redis 运行在 Docker 容器中 , 分配了 一个 cpu 以及 512MB 内存, 在 Docker 中执行 redis-benchmark -t set -r 100000 -n 1000000 结果如下:

\====== SET ======
1000000 requests completed in 171.03 seconds
50 parallel clients
3 bytes payload
keep alive: 1
host configuration "save": 3600 1 300 100 60 10000
host configuration "appendonly": no
multi-thread: no

其实这里有些不严谨 benchmark 线程不应该在 Docker 容器内部运行 . 跑分的时候大概 benchmark 和 redis 主线程各自持有 50%CPU

测试代码如下:

@Service
@Slf4j
public class RedisJob {
@Autowired
private StringRedisTemplate stringRedisTemplate;

public DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
public LocalDateTime end = LocalDateTime.of(LocalDate.of(2020, 5, 12), LocalTime.of(8, 0));

@Scheduled(cron = "0 56 \* \* \* ?")
public void initKeys() {
LocalDateTime now = LocalDateTime.now();
ValueOperations operations = stringRedisTemplate.opsForValue();
log.info("开始设置key");
LocalDateTime begin = now.withMinute(0).withSecond(0).withNano(0);
for (int i = 1; i < 17; i++) {
setExpireKey(begin.plusHours(i), 8, operations);
}
log.info("设置完毕: " + Duration.between(now, LocalDateTime.now()));
}

private void setExpireKey(LocalDateTime expireTime, int step, ValueOperations operations) {
LocalDateTime localDateTime = LocalDateTime.now().withNano(0);
String nowTime = dateTimeFormatter.format(localDateTime);
while (expireTime.getMinute() < 55) {
operations.set(nowTime + "@" + dateTimeFormatter.format(expireTime), "A", Duration.between(expireTime, LocalDateTime.now()).abs());
expireTime = expireTime.plusSeconds(step);
}
}
}

大概意思就是每小时 56 分的时候 , 会增加一批在接下来 16 小时过期的 key , 过期时间间隔 8 秒 , 且过期时间都在 55 分之前

@Slf4j
@Component
public class RedisKeyExpirationListener extends KeyExpirationEventMessageListener {

public RedisKeyExpirationListener(RedisMessageListenerContainer listenerContainer) {
super(listenerContainer);
}

public DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
@Autowired
private StringRedisTemplate stringRedisTemplate;


@Override
public void onMessage(Message message, byte\[\] pattern) {
String keyName = new String(message.getBody());
LocalDateTime parse = LocalDateTime.parse(keyName.split("@")\[1\], dateTimeFormatter);
long seconds = Duration.between(parse, LocalDateTime.now()).getSeconds();
stringRedisTemplate.execute((RedisCallback) connection -> {
Long size = connection.dbSize();
log.info("过期key:" + keyName + " ,当前size:" + size + " ,滞后时间" + seconds);
return null;
});
}
}

这里是监测到过期之后打印当前的 dbSize 以及滞后时间

@Bean
public RedisMessageListenerContainer configRedisMessageListenerContainer(RedisConnectionFactory connectionFactory) {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(100);
executor.setMaxPoolSize(100);
executor.setQueueCapacity(100);
executor.setKeepAliveSeconds(3600);
executor.setThreadNamePrefix("redis");
// rejection-policy:当pool已经达到max size的时候,如何处理新任务
// CALLER\_RUNS:不在新线程中执行任务,而是由调用者所在的线程来执行
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
executor.initialize();
RedisMessageListenerContainer container = new RedisMessageListenerContainer();
// 设置Redis的连接工厂
container.setConnectionFactory(connectionFactory);
// 设置监听使用的线程池
container.setTaskExecutor(executor);
// 设置监听的Topic
return container;
}

设置 Redis 的过期监听 以及线程池信息 ,

最后的测试结果是当 key 数量小于 1 万的时候 , 基本上都可以在 10s 内完成过期通知 , 但是如果数量到 3 万 , 就有部分 key 会延迟 120s . 顺便贴一下我最新的日志

2020-05-13 22:16:48.383  : 过期key:2020-05-13 11:56:02@2020-05-13 22:14:08 ,当前size:57405 ,滞后时间160
2020-05-13 22:16:49.389 : 过期key:2020-05-13 11:56:02@2020-05-13 22:14:32 ,当前size:57404 ,滞后时间137
2020-05-13 22:16:49.591 : 过期key:2020-05-13 10:56:02@2020-05-13 22:13:20 ,当前size:57403 ,滞后时间209
2020-05-13 22:16:50.093 : 过期key:2020-05-13 20:56:00@2020-05-13 22:12:32 ,当前size:57402 ,滞后时间258
2020-05-13 22:16:50.596 : 过期key:2020-05-13 07:56:03@2020-05-13 22:13:28 ,当前size:57401 ,滞后时间202
2020-05-13 22:16:50.697 : 过期key:2020-05-13 20:56:00@2020-05-13 22:14:32 ,当前size:57400 ,滞后时间138
2020-05-13 22:16:50.999 : 过期key:2020-05-13 19:56:00@2020-05-13 22:13:44 ,当前size:57399 ,滞后时间186
2020-05-13 22:16:51.199 : 过期key:2020-05-13 20:56:00@2020-05-13 22:14:40 ,当前size:57398 ,滞后时间131
2020-05-13 22:16:52.205 : 过期key:2020-05-13 15:56:01@2020-05-13 22:16:24 ,当前size:57397 ,滞后时间28
2020-05-13 22:16:52.808 : 过期key:2020-05-13 06:56:03@2020-05-13 22:15:04 ,当前size:57396 ,滞后时间108
2020-05-13 22:16:53.009 : 过期key:2020-05-13 06:56:03@2020-05-13 22:16:40 ,当前size:57395 ,滞后时间13
2020-05-13 22:16:53.110 : 过期key:2020-05-13 20:56:00@2020-05-13 22:14:56 ,当前size:57394 ,滞后时间117
2020-05-13 22:16:53.211 : 过期key:2020-05-13 06:56:03@2020-05-13 22:13:44 ,当前size:57393 ,滞后时间189
2020-05-13 22:16:53.613 : 过期key:2020-05-13 15:56:01@2020-05-13 22:12:24 ,当前size:57392 ,滞后时间269
2020-05-13 22:16:54.317 : 过期key:2020-05-13 15:56:01@2020-05-13 22:16:00 ,当前size:57391 ,滞后时间54
2020-05-13 22:16:54.517 : 过期key:2020-05-13 18:56:00@2020-05-13 22:15:44 ,当前size:57390 ,滞后时间70
2020-05-13 22:16:54.618 : 过期key:2020-05-13 21:56:00@2020-05-13 22:14:24 ,当前size:57389 ,滞后时间150
2020-05-13 22:16:54.819 : 过期key:2020-05-13 17:56:00@2020-05-13 22:14:40 ,当前size:57388 ,滞后时间134
2020-05-13 22:16:55.322 : 过期key:2020-05-13 10:56:02@2020-05-13 22:13:52 ,当前size:57387 ,滞后时间183
2020-05-13 22:16:55.423 : 过期key:2020-05-13 07:56:03@2020-05-13 22:14:16 ,当前size:57386 ,滞后时间159

可以看到 , 当数量到达 5 万的时候 , 大部分都已经滞后了两分钟 , 对于业务方来说已经完全无法忍受了

总结

可能到这里 , 你会说 Redis 给你挖了一个大坑 , 但其实这些都在文档上写的明明白白

  • How Redis expires keys:https://redis.io/commands/expire#how-redis-expires-keys

  • Timing of expired events:https://redis.io/topics/notifications#timing-of-expired-events

尤其是在 Timing of expired events  中 , 明确的说明了 "Basically expired events are generated when the Redis server deletes the key and not when the time to live theoretically reaches the value of zero.", 这两个文章读下来你会感觉 ,  卧槽 Redis 的过期策略其实也挺'Low'的

其实公众号看多了 , 你会发现大部分 Demo 都是互相抄来抄去 , 以及翻译官方 Demo . 建议大家还是谨慎一些 , 真要使用的话 , 最好读一下官方文档 , 哪怕用百度翻译也要有一些自己的理解 .

文章比较枯燥 , 感谢大家耐心阅读 ,  如有建议 恳请留言.

更多好文章

  1. Java高并发系列(共34篇)
  2. MySql高手系列(共27篇)
  3. Maven高手系列(共10篇)
  4. Mybatis系列(共12篇)
  5. 聊聊db和缓存一致性常见的实现方式
  6. 接口幂等性这么重要,它是什么?怎么实现?
  7. 泛型,有点难度,会让很多人懵逼,那是因为你没有看这篇文章!

浏览 13
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报