Redis 内存满了怎么办?
Java后端技术
共 9562字,需浏览 20分钟
·
2021-03-01 15:41
往期热门文章:
Redis占用内存大小
Redis的内存淘汰
LRU算法
LRU在Redis中的实现
LFU算法
问题
Redis占用内存大小
1、通过配置文件配置
//设置Redis最大占用内存大小为100M
maxmemory 100mb
redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的
2、通过命令修改
//设置Redis最大占用内存大小为100M
127.0.0.1:6379> config set maxmemory 100mb
//获取设置的Redis能使用的最大内存大小
127.0.0.1:6379> config get maxmemory
如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存
Redis的内存淘汰
noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)
allkeys-lru:从所有key中使用LRU算法进行淘汰
volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰
allkeys-random:从所有key中随机淘汰数据
volatile-random:从设置了过期时间的key中随机淘汰
volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰
当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误
如何获取及设置内存淘汰策略
127.0.0.1:6379> config get maxmemory-policy
maxmemory-policy allkeys-lru
127.0.0.1:6379> config set maxmemory-policy allkeys-lru
LRU算法
什么是LRU?
LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法。 在使用内存作为缓存的时候,缓存的大小一般是固定的。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据。 这个时候就可以使用LRU算法了。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉。
使用java实现一个简单的LRU算法
public class LRUCache<k, v> {
//容量
private int capacity;
//当前有多少节点的统计
private int count;
//缓存节点
private Map<k, node> nodeMap;
private Nodehead;
private Nodetail;
public LRUCache(int capacity) {
if (capacity < 1) {
throw new IllegalArgumentException(String.valueOf(capacity));
}
this.capacity = capacity;
this.nodeMap = new HashMap<>();
//初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码
Node headNode = new Node(null, null);
Node tailNode = new Node(null, null);
headNode.next = tailNode;
tailNode.pre = headNode;
this.head = headNode;
this.tail = tailNode;
}
public void put(k key, v value) {
Nodenode = nodeMap.get(key);
if (node == null) {
if (count >= capacity) {
//先移除一个节点
removeNode();
}
node = new Node<>(key, value);
//添加节点
addNode(node);
} else {
//移动节点到头节点
moveNodeToHead(node);
}
}
public Nodeget(k key) {
Nodenode = nodeMap.get(key);
if (node != null) {
moveNodeToHead(node);
}
return node;
}
private void removeNode() {
Node node = tail.pre;
//从链表里面移除
removeFromList(node);
nodeMap.remove(node.key);
count--;
}
private void removeFromList(Nodenode) {
Node pre = node.pre;
Node next = node.next;
pre.next = next;
next.pre = pre;
node.next = null;
node.pre = null;
}
private void addNode(Nodenode) {
//添加节点到头部
addToHead(node);
nodeMap.put(node.key, node);
count++;
}
private void addToHead(Nodenode) {
Node next = head.next;
next.pre = node;
node.next = next;
node.pre = head;
head.next = node;
}
public void moveNodeToHead(Nodenode) {
//从链表里面移除
removeFromList(node);
//添加节点到头部
addToHead(node);
}
class Node<k, v> {
k key;
v value;
Node pre;
Node next;
public Node(k key, v value) {
this.key = key;
this.value = value;
}
}
}
上面这段代码实现了一个简单的LUR算法,代码很简单,也加了注释,仔细看一下很容易就看懂。
LRU在Redis中的实现
近似LRU算法
可以通过maxmemory-samples参数修改采样数量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法
Redis3.0对近似LRU的优化
LRU算法的对比
浅灰色是被淘汰的数据
灰色是没有被淘汰掉的老数据
绿色是新加入的数据
LFU算法
volatile-lfu:在设置了过期时间的key中使用LFU算法淘汰key
allkeys-lfu:在所有的key中使用LFU算法淘汰数据
设置使用这两种淘汰策略跟前面讲的一样,不过要注意的一点是这两周策略只能在Redis4.0及以上设置,如果在Redis4.0以下设置会报错
问题
往期热门文章:
1、《历史文章分类导读列表!精选优秀博文都在这里了!》
2、17 张程序员专属壁纸,太太太太太太骚了…
3、刚刚,腾讯每人发100股:市值7万,不算年终奖!员工:愿为小马哥拼命 4、在 IDEA 中用了热部署神器 JRebel 之后,开发效率提升10倍! 5、Typora + GitHub = 效率 6、女朋友为我写了一个防猝死插件 7、请谨慎使用Arrays.asList、ArrayList的subList 8、全球顶级的14位程序员!膜拜! 9、万亿级数据应该怎么迁移?
10、从应用到底层 36张图带你进入Redis世界
评论