Python 实现循环的最快方式(for、while 等速度对比)

菜鸟学Python

共 2931字,需浏览 6分钟

 ·

2021-12-11 05:33

作者:StarryLand
来源:https://www.starky.ltd/2021/11/23/the-fastest-way-to-loop-in-python

众所周知,Python 不是一种执行效率较高的语言。此外在任何语言中,循环都是一种非常消耗时间的操作。假如任意一种简单的单步操作耗费的时间为 1 个单位,将此操作重复执行上万次,最终耗费的时间也将增长上万倍。

whilefor 是 Python 中常用的两种实现循环的关键字,它们的运行效率实际上是有差距的。比如下面的测试代码:

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354

这是一个简单的求和操作,计算从 1 到 n 之间所有自然数的总和。可以看到 for 循环相比 while 要快 1.5 秒。

其中的差距主要在于两者的机制不同。

在每次循环中,while 实际上比 for 多执行了两步操作:边界检查和变量 i 的自增。即每进行一次循环,while 都会做一次边界检查 (while i < n)和自增计算(i +=1)。这两步操作都是显式的纯 Python 代码。

for 循环不需要执行边界检查和自增操作,没有增加显式的 Python 代码(纯 Python 代码效率低于底层的 C 代码)。当循环的次数足够多,就出现了明显的效率差距。

可以再增加两个函数,在 for 循环中加上不必要的边界检查和自增计算:

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def for_loop_with_inc(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
        i += 1
    return s


def for_loop_with_test(n=100_000_000):
    s = 0
    for i in range(n):
        if i < n:
            pass
        s += i
    return s


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('for loop with increment\t\t',
          timeit.timeit(for_loop_with_inc, number=1))
    print('for loop with test\t\t', timeit.timeit(for_loop_with_test, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => for loop with increment          4.602369500091299
# => for loop with test               4.18337869993411

可以看出,增加的边界检查和自增操作确实大大影响了 for 循环的执行效率。

前面提到过,Python 底层的解释器和内置函数是用 C 语言实现的。而 C 语言的执行效率远大于 Python。

对于上面的求等差数列之和的操作,借助于 Python 内置的 sum 函数,可以获得远大于 forwhile 循环的执行效率。

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def sum_range(n=100_000_000):
    return sum(range(n))


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('sum range\t\t', timeit.timeit(sum_range, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => sum range                0.8658821999561042

可以看到,使用内置函数 sum 替代循环之后,代码的执行效率实现了成倍的增长。

内置函数 sum 的累加操作实际上也是一种循环,但它由 C 语言实现,而 for 循环中的求和操作是由纯 Python 代码 s += i 实现的。C > Python。

再拓展一下思维。小时候都听说过童年高斯巧妙地计算 1 到 100 之和的故事。1…100 之和等于 (1 + 100) * 50。这个计算方法同样可以应用到上面的求和操作中。

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def sum_range(n=100_000_000):
    return sum(range(n))


def math_sum(n=100_000_000):
    return (n * (n - 1)) // 2


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('sum range\t\t', timeit.timeit(sum_range, number=1))
    print('math sum\t\t', timeit.timeit(math_sum, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => sum range                0.8658821999561042
# => math sum                 2.400018274784088e-06

最终 math sum 的执行时间约为 2.4e-6,缩短了上百万倍。这里的思路就是,既然循环的效率低,一段代码要重复执行上亿次。

索性直接不要循环,通过数学公式,把上亿次的循环操作变成只有一步操作。效率自然得到了空前的加强。

最后的结论(有点谜语人):

实现循环的最快方式—— —— ——就是不用循环

对于 Python 而言,则尽可能地使用内置函数,将循环中的纯 Python 代码降到最低。

参考资料

The Fastest Way to Loop in Python - mCoding  (https://youtu.be/Qgevy75co8c)




推荐阅读:

入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python  | 实战项目 |学Python就是这条捷径


干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 |   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影


趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!


AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影


小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!


年度爆款文案


点阅读原文,看200个Python案例

浏览 17
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报