java容器中的几种计数方法浅谈

共 26547字,需浏览 54分钟

 ·

2021-03-26 16:05

走过路过不要错过

点击蓝字关注我们


本文讨论java集合容器中的几种元素数量获取的方式,命题很小,但是也足以让我们思考一些东西。

所谓计数:即是给出所在容器的元素总数的方式。一般能想到的就是两种方式:一是使用某个字段直接存储该计数值,二是在请求计数值时临时去计算所有元素数量。貌似本文的答案已经出来了。好吧,那我们还是从源码的角度来验证下想法吧:

一般在java的集合容器中,可以分为普通容器和并发容器,我们就姑且以这种方式来划分下,验证下其实现计数的方式吧!

1:普通容器 --HashMap

一般非并发容器在进行增删改时,都会同时维护一个count值,如hashmap中的实现:

    // HashMap 增加和修改都在此实现    /**     * Implements Map.put and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to put     * @param onlyIfAbsent if true, don't change existing value     * @param evict if false, the table is in creation mode.     * @return previous value, or null if none     */    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {        Node<K,V>[] tab; Node<K,V> p; int n, i;        if ((tab = table) == null || (n = tab.length) == 0)            n = (tab = resize()).length;        if ((p = tab[i = (n - 1) & hash]) == null)            tab[i] = newNode(hash, key, value, null);        else {            Node<K,V> e; K k;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            else if (p instanceof TreeNode)                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            else {                for (int binCount = 0; ; ++binCount) {                    if ((e = p.next) == null) {                        p.next = newNode(hash, key, value, null);                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            if (e != null) { // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        // 直接对size进行增加1即可, 如果是更新key的值,则不会运行到此处,即不会进行相加        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }    // 删除元素的实现,同时维护 size 大小    /**     * Implements Map.remove and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to match if matchValue, else ignored     * @param matchValue if true only remove if value is equal     * @param movable if false do not move other nodes while removing     * @return the node, or null if none     */    final Node<K,V> removeNode(int hash, Object key, Object value,                               boolean matchValue, boolean movable) {        Node<K,V>[] tab; Node<K,V> p; int n, index;        if ((tab = table) != null && (n = tab.length) > 0 &&            (p = tab[index = (n - 1) & hash]) != null) {            Node<K,V> node = null, e; K k; V v;            // 先查找node所在的位置            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                node = p;            else if ((e = p.next) != null) {                if (p instanceof TreeNode)                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);                else {                    do {                        if (e.hash == hash &&                            ((k = e.key) == key ||                             (key != null && key.equals(k)))) {                            node = e;                            break;                        }                        p = e;                    } while ((e = e.next) != null);                }            }            if (node != null && (!matchValue || (v = node.value) == value ||                                 (value != null && value.equals(v)))) {                if (node instanceof TreeNode)                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);                else if (node == p)                    tab[index] = node.next;                else                    p.next = node.next;                ++modCount;                // 直接减小size即可                --size;                afterNodeRemoval(node);                return node;            }        }        return null;    }

因为有了增删改时对计数器的维护,所以在想要获取总数时,就容易许多了。只需把size字段返回即可。

    // HashMap.size()    /**     * Returns the number of key-value mappings in this map.     *     * @return the number of key-value mappings in this map     */    public int size() {        return size;    }

所以,在这种情况下,获取计数值的方式非常简单。但是不管怎么样,size字段对外部是不可见的,因为它是容器内部的一个实现逻辑,它完全在将来的某个时刻改变掉。即 size() != size


2. 普通容器 --LinkedList

看完hash类的计数实现,咱们再来看另外一个类型的容器LinkedList:

    // LinkedList.add(E)   添加一个元素    public boolean add(E e) {        linkLast(e);        return true;    }    /**     * Links e as last element.     */    void linkLast(E e) {        final Node<E> l = last;        final Node<E> newNode = new Node<>(l, e, null);        last = newNode;        if (l == null)            first = newNode;        else            l.next = newNode;        // 同样,直接使用一个 size 计数器统计即可        size++;        modCount++;    }
// 删除一个元素, 同时维护 size 字段 public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } /** * Unlinks non-null first node f. */ private E unlinkFirst(Node<E> f) { // assert f == first && f != null; final E element = f.item; final Node<E> next = f.next; f.item = null; f.next = null; // help GC first = next; if (next == null) last = null; else next.prev = null; // 元素计数减1 size--; modCount++; return element; }
// 同样,统计元素数量时,直接返回size即可 public int size() { return size; }

可见,LinkedList 也同样是简单地维护一个计数器字段,从而实现了高效地计数方法。而这简单地实现,则是基于单线程的访问的,它同时维护一个计数字段,基本没有多少开销,却给取值时带来了便利。

总结: 普通容器直接维护一个计数器字段,可以很方便地进行大小统计操作。

3. 并发容器 --ConcurrentHashMap

而对于并发容器,则可能会不一样些,但也有一些情况是一样的。比较,HashTable, 直接使用 synchronized 来保证线程安全,则它也同样可以直接使用一个size即可完成元素大小的统计。事实上,有些版本的HashTable仅仅是在HashMap的上面加上了synchronizd锁而已(有些版本则是 不一样的哦),细节咱们无需再看。

而稍微有点不一样的如: ConcurrentHashMap.size(), 早期的 ConcurrentHashMap 使用分段锁,则需要统计各segement的元素,相加起来然后得到整体元素大小. 而jdk1.8中,已经放弃使用分段锁来实现高性能安全的hash容器了,而是直接使用 synchronized + CAS + 红黑树 实现. 那么,我们来看看其实现元素统计这一功能的实现有何不同吧!

    // ConcurrentHashMap.putVal()  新增或修改一个元素    /** Implementation for put and putIfAbsent */    final V putVal(K key, V value, boolean onlyIfAbsent) {        if (key == null || value == null) throw new NullPointerException();        int hash = spread(key.hashCode());        int binCount = 0;        for (Node<K,V>[] tab = table;;) {            Node<K,V> f; int n, i, fh;            if (tab == null || (n = tab.length) == 0)                tab = initTable();            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {                if (casTabAt(tab, i, null,                             new Node<K,V>(hash, key, value, null)))                    break;                   // no lock when adding to empty bin            }            else if ((fh = f.hash) == MOVED)                tab = helpTransfer(tab, f);            else {                V oldVal = null;                synchronized (f) {                    if (tabAt(tab, i) == f) {                        if (fh >= 0) {                            binCount = 1;                            for (Node<K,V> e = f;; ++binCount) {                                K ek;                                if (e.hash == hash &&                                    ((ek = e.key) == key ||                                     (ek != null && key.equals(ek)))) {                                    oldVal = e.val;                                    if (!onlyIfAbsent)                                        e.val = value;                                    break;                                }                                Node<K,V> pred = e;                                if ((e = e.next) == null) {                                    pred.next = new Node<K,V>(hash, key,                                                              value, null);                                    break;                                }                            }                        }                        else if (f instanceof TreeBin) {                            Node<K,V> p;                            binCount = 2;                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                                           value)) != null) {                                oldVal = p.val;                                if (!onlyIfAbsent)                                    p.val = value;                            }                        }                    }                }                if (binCount != 0) {                    if (binCount >= TREEIFY_THRESHOLD)                        treeifyBin(tab, i);                    if (oldVal != null)                        return oldVal;                    break;                }            }        }        // 主要是在进行新增成功时,再进行计数器的操作, 看起来不是 ++size 这么简单了        addCount(1L, binCount);        return null;    }
// 这个计数的相加看起来相当复杂 /** * Adds to count, and if table is too small and not already * resizing, initiates transfer. If already resizing, helps * perform transfer if work is available. Rechecks occupancy * after a transfer to see if another resize is already needed * because resizings are lagging additions. * * @param x the count to add * @param check if <0, don't check resize, if <= 1 only check if uncontended */ private final void addCount(long x, int check) { CounterCell[] as; long b, s; // 使用 CounterCell 来实现计数操作 // 使用 CAS 保证更新计数时只会有一个线程成功 if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || // 使用一个类似随机负载均衡的方式,将计数值随机添加到 CounterCell 的某个值下面,减少多线程竞争的可能性 (a = as[ThreadLocalRandom.getProbe() & m]) == null || // 通过cas将计数值x添加到 CounterCell 的 value 字段中 !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { // 如果上面添加失败,则使用 fullAddCount 进行重新添加该计数 fullAddCount(x, uncontended); return; } if (check <= 1) return; // 基于 CounterCell 做一此汇总操作 s = sumCount(); } // 在进行put值时, check的值都是大于等于0的 if (check >= 0) { Node<K,V>[] tab, nt; int n, sc; // rehash 处理 while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) // 辅助进行hash扩容 transfer(tab, null); s = sumCount(); } } } // fullAddCount 比较复杂, 它的目的是为了保证多线程可以快速进行添加完成, 目标很简单, 即向数组 CounterCell 中添加一个值 x // See LongAdder version for explanation private final void fullAddCount(long x, boolean wasUncontended) { int h; if ((h = ThreadLocalRandom.getProbe()) == 0) { ThreadLocalRandom.localInit(); // force initialization h = ThreadLocalRandom.getProbe(); wasUncontended = true; } boolean collide = false; // True if last slot nonempty for (;;) { CounterCell[] as; CounterCell a; int n; long v; if ((as = counterCells) != null && (n = as.length) > 0) { if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { // Try to attach new Cell CounterCell r = new CounterCell(x); // Optimistic create if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean created = false; try { // Recheck under lock CounterCell[] rs; int m, j; if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) break; continue; // Slot is now non-empty } } collide = false; } else if (!wasUncontended) // CAS already known to fail wasUncontended = true; // Continue after rehash else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) break; else if (counterCells != as || n >= NCPU) collide = false; // At max size or stale else if (!collide) collide = true; else if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { try { if (counterCells == as) {// Expand table unless stale CounterCell[] rs = new CounterCell[n << 1]; for (int i = 0; i < n; ++i) rs[i] = as[i]; counterCells = rs; } } finally { cellsBusy = 0; } collide = false; continue; // Retry with expanded table } h = ThreadLocalRandom.advanceProbe(h); } else if (cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean init = false; try { // Initialize table if (counterCells == as) { CounterCell[] rs = new CounterCell[2]; rs[h & 1] = new CounterCell(x); counterCells = rs; init = true; } } finally { cellsBusy = 0; } if (init) break; } else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) break; // Fall back on using base } } // ConcurrentHashMap.remove 删除元素 /** * Implementation for the four public remove/replace methods: * Replaces node value with v, conditional upon match of cv if * non-null. If resulting value is null, delete. */ final V replaceNode(Object key, V value, Object cv) { int hash = spread(key.hashCode()); for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) break; else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; boolean validated = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { validated = true; for (Node<K,V> e = f, pred = null;;) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { V ev = e.val; if (cv == null || cv == ev || (ev != null && cv.equals(ev))) { oldVal = ev; if (value != null) e.val = value; // 删除元素 else if (pred != null) pred.next = e.next; else setTabAt(tab, i, e.next); } break; } pred = e; if ((e = e.next) == null) break; } } else if (f instanceof TreeBin) { validated = true; TreeBin<K,V> t = (TreeBin<K,V>)f; TreeNode<K,V> r, p; if ((r = t.root) != null && (p = r.findTreeNode(hash, key, null)) != null) { V pv = p.val; if (cv == null || cv == pv || (pv != null && cv.equals(pv))) { oldVal = pv; if (value != null) p.val = value; // 删除元素 else if (t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } } if (validated) { if (oldVal != null) { // value = null, 代表需要将元素删除,所以需要对计数器做减1操作 if (value == null) addCount(-1L, -1); return oldVal; } break; } } } return null; }

同样是由于在增删时,维护一个计数器(CounterCell数组), 所以对于返回计数值操作则会比较简单化:

    // ConcurrentHashMap.size()    public int size() {        long n = sumCount();        return ((n < 0L) ? 0 :                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :                (int)n);    }    // 直接将 CounterCell 中的值相加起来即可    final long sumCount() {        CounterCell[] as = counterCells; CounterCell a;        long sum = baseCount;        if (as != null) {            for (int i = 0; i < as.length; ++i) {                if ((a = as[i]) != null)                    sum += a.value;            }        }        return sum;    }

虽然ConcurrentHash的元素本身没有使用分段式存储了,但是其计数值还是存在了多个 CounterCell 中,目的自然是为了减少多线程竞争对计数器的更新成性能瓶颈。在进行 size() 计数时,并未有上锁操作,整个 CounterCell 使用 volatile 修饰,保证其可见性,但是整个size 却是不保证绝对准确的哦。

4. 并发容器 --ArrayBlockingQueue

下面我们再来看看另一各类型的并发容器: ArrayBlockingQueue

    // ArrayBlockingQueue.offer()    /**     * Inserts the specified element at the tail of this queue if it is     * possible to do so immediately without exceeding the queue's capacity,     * returning {@code true} upon success and {@code false} if this queue     * is full.  This method is generally preferable to method {@link #add},     * which can fail to insert an element only by throwing an exception.     *     * @throws NullPointerException if the specified element is null     */    public boolean offer(E e) {        checkNotNull(e);        final ReentrantLock lock = this.lock;        // 直接上锁操作        lock.lock();        try {            if (count == items.length)                return false;            else {                // 进行入队操作                enqueue(e);                return true;            }        } finally {            lock.unlock();        }    }
/** * Inserts element at current put position, advances, and signals. * Call only when holding lock. */ private void enqueue(E x) { // assert lock.getHoldCount() == 1; // assert items[putIndex] == null; final Object[] items = this.items; items[putIndex] = x; if (++putIndex == items.length) putIndex = 0; // 同样,它还是通过一个 count 的计数器完成统计工作 count++; notEmpty.signal(); } // 移除动作时,也需要维护 count 的值 /** * Deletes item at array index removeIndex. * Utility for remove(Object) and iterator.remove. * Call only when holding lock. */ void removeAt(final int removeIndex) { // assert lock.getHoldCount() == 1; // assert items[removeIndex] != null; // assert removeIndex >= 0 && removeIndex < items.length; final Object[] items = this.items; if (removeIndex == takeIndex) { // removing front item; just advance items[takeIndex] = null; if (++takeIndex == items.length) takeIndex = 0; // 移除成功, 将计数器减1 count--; if (itrs != null) itrs.elementDequeued(); } else { // an "interior" remove
// slide over all others up through putIndex. // 通过轮询的方式, 必然有一个元素被删除 final int putIndex = this.putIndex; for (int i = removeIndex;;) { int next = i + 1; if (next == items.length) next = 0; if (next != putIndex) { items[i] = items[next]; i = next; } else { items[i] = null; this.putIndex = i; break; } // 计数器相减 count--; if (itrs != null) itrs.removedAt(removeIndex); } notFull.signal(); }

同样是维护了一个计数器,但是因为有上锁机制的保证,整个过程看起来就简单了许多。在获取元素大小时,自然也就简单了.

    // ArrayBlockingQueue.size()    /**     * Returns the number of elements in this queue.     *     * @return the number of elements in this queue     */    public int size() {        final ReentrantLock lock = this.lock;        lock.lock();        try {            return count;        } finally {            lock.unlock();        }    }

但是它为了保证结果的准确性,在计数时,同样进行了上锁操作。可见,并发容器的实现思路也基本一致.并无太多奇淫技巧. 咱们再来看一下并发容器的实现: CopyOnWriteArrayList

5. 并发容器 --CopyOnWriteArrayList

顾名思义,是在写操作的时候,使用复制方式进行实现。

    // CopyOnWriteArrayList.add()    /**     * Appends the specified element to the end of this list.     *     * @param e element to be appended to this list     * @return {@code true} (as specified by {@link Collection#add})     */    public boolean add(E e) {        final ReentrantLock lock = this.lock;        // 同样上锁保证线程安全        lock.lock();        try {            Object[] elements = getArray();            int len = elements.length;            // 将元素copy出来, 但其并非维护一个len字段            Object[] newElements = Arrays.copyOf(elements, len + 1);            newElements[len] = e;            setArray(newElements);            return true;        } finally {            lock.unlock();        }    }    // CopyOnWriteArrayList, 删除一个字段, 同其名称一样, 还是使用写时复制实现     public E remove(int index) {        final ReentrantLock lock = this.lock;        lock.lock();        try {            Object[] elements = getArray();            int len = elements.length;            E oldValue = get(elements, index);            int numMoved = len - index - 1;            if (numMoved == 0)                setArray(Arrays.copyOf(elements, len - 1));            else {                // 找到移除的字段位置, 依次复制其前后元素到新数组中,完成功能                Object[] newElements = new Object[len - 1];                System.arraycopy(elements, 0, newElements, 0, index);                System.arraycopy(elements, index + 1, newElements, index,                                 numMoved);                setArray(newElements);            }            return oldValue;        } finally {            lock.unlock();        }    }

// CopyOnWriteArrayList.size(), 直接使用数组长度字段 /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { // 获取元素大小时,直接获取所有元素,取数组的长度即可. 借用jvm提供的数组长度元信息实现 return getArray().length; } /** * Gets the array. Non-private so as to also be accessible * from CopyOnWriteArraySet class. */ final Object[] getArray() { // 该array字段一定是要保证可见性的, 即至少得是 volatile 修饰的数据 return array; }

CopyOnWriteArrayList, 因为其语义决定,其在一定程度上是线程安全的,所以,在读操作时,就不需要上锁,从而性能在某些场景会比较好。

根据功能特性的不同, CopyOnWriteArrayList 采用了一个不同实现方式, 实现了元素的统计功能. 另外像 SynchronousQueue#size, 则永久返回0, 因为它的定义是当被放一个元素后,必须等到有线程消费之后才可返回,而其本身并不存储元素. 所以, 虽然元素计数道理比较简单通用, 但是还是要按照具体的场景进行相应的实现, 才能满足具体的需求. 即不可脱离场景谈技术. 

6. 更多计数

类似数据库类的产品,同样的这样的计数刚性需求,各自实现方式也有不同,但大体思路也差不多。比如 redis 的计数使用在计数时临时遍历元素实现,mysql myisam 引擎使用一个表级的计数器等等。




往期精彩推荐



腾讯、阿里、滴滴后台面试题汇总总结 — (含答案)

面试:史上最全多线程面试题 !

最新阿里内推Java后端面试题

JVM难学?那是因为你没认真看完这篇文章


END


关注作者微信公众号 —《JAVA烂猪皮》


了解更多java后端架构知识以及最新面试宝典


你点的每个好看,我都认真当成了


看完本文记得给作者点赞+在看哦~~~大家的支持,是作者源源不断出文的动力


作者:等你归去来

出处:https://www.cnblogs.com/yougewe/p/13238124.html


浏览 24
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报