Python 性能测试工具 Locust 极简入门

Python猫

共 2936字,需浏览 6分钟

 ·

2021-05-11 19:41

作者:dongfanger
来源:dongfanger
Locust是一款Python技术栈的开源的性能测试工具。Locust直译为蝗虫,寓意着它能产生蝗虫般成千上万的并发用户:
Locust并不小众,从它Github的Star数量就可见一斑:
截止文章写作时,一共15951Star。
Locust生态良好,它已在多家外企(包括世界500强)投入使用:
如此看来,Locust是非常值得学习和掌握的一款工具。
Python的魔力在于化繁为简,基于Python的Locust也能给仍然困惑于性能测试的我们带来启发。

Locust特点

  • 以纯Python方式编写用户脚本,提供极大自由度。

  • 用户脚本可以串行方式编写,Locust会通过轻量级进程/协程产生并发,无需自己做并发编程。

  • 并发量大,借助于gevent库,Locust能产生成千上万并发请求。

  • 开销小,Locust用户运行时开销很小。

  • 良好的Web UI对性能结果实时监测。

  • 能测任何系统任何协议,只需要写个client即可。

  • 开放REST API,尽情发挥。

安装Locust

需要Python版本3.6及以上。
执行pip命令:
$ pip install locust
验证安装成功:
$ locust -V
安装时会一并安装依赖库:
Installing collected packages: Werkzeug, pywin32, zope.event, greenlet, gevent, geventhttpclient, itsdangerous, flask, Flask-BasicAuth, ConfigArgParse, pyzmq, psutil, locust

能看出来flask为Locust提供了Web功能。

快速上手

使用Locust一般按照以下步骤进行:
  1. 编写Python用户脚本。

  2. 使用locust命令执行性能测试。

  3. (可选)通过Web界面监测结果。

示例代码如下,新建locustfile.py文件:
import time
from locust import HttpUser, task, between

class QuickstartUser(HttpUser):
wait_time = between(1, 2.5)

@task
def hello_world(self):
self.client.get("/hello")
self.client.get("/world")

@task(3)
def view_items(self):
for item_id in range(10):
self.client.get(f"/item?id={item_id}", name="/item")
time.sleep(1)

def on_start(self):
self.client.post("/login", json={"username":"foo", "password":"bar"})
路径切换到locustfile.py文件所在目录,执行命令:
$ locust
也可以通过-f指定某个目录文件:
$ locust -f locust_files/my_locust_file.py
运行后,打开http://127.0.0.1:8089看到Web界面:
填写信息后,就能开始压测了。Web界面提供了结果统计数据:
和性能指标走势图:

脚本解析

示例脚本解析如下:
# Locust用户脚本就是Python模块
import time
from locust import HttpUser, task, between

# 类继承自HttpUser
class QuickstartUser(HttpUser):
# 每个模拟用户等待1~2.5秒
wait_time = between(1, 2.5)

# 被@task装饰的才会并发执行
@task
def hello_world(self):
# client属性是HttpSession实例,用来发送HTTP请求
self.client.get("/hello")
self.client.get("/world")

# 每个类只会有一个task被选中执行
# 3代表weight权重
# 权重越大越容易被选中执行
# view_items比hello_wolrd多3倍概率被选中执行
@task(3)
def view_items(self):
for item_id in range(10):
# name参数作用是把统计结果按同一名称进行分组
# 这里防止URL参数不同会产生10个不同记录不便于观察
# 把10个汇总成1个"/item"记录
self.client.get(f"/item?id={item_id}", name="/item")
time.sleep(1)

# 每个模拟用户开始运行时都会执行
def on_start(self):
self.client.post("/login", json={"username":"foo", "password":"bar"})

小结

本文先了解了Locust的背景和生态,它是值得学习的,对于Python技术栈来说更加如此。接着介绍了使用pip命令安装Locust,其中发现顺带安装了flask,Locust的Web功能是flask提供的
然后给出了一段示例代码,按照步骤上手Locust。最后对示例代码进行了解析,浅尝辄止。locustfile实际上该怎么写呢?
参考资料:
https://locust.io/
https://docs.locust.io/en/stable/
Python猫技术交流群开放啦!群里既有国内一二线大厂在职员工,也有国内外高校在读学生,既有十多年码龄的编程老鸟,也有中小学刚刚入门的新人,学习氛围良好!想入群的同学,请在公号内回复『交流群』,获取猫哥的微信(谢绝广告党,非诚勿扰!)~


还不过瘾?试试它们




用 Python 实现简易 Web 服务器

2021年,你应该知道的Python打包指南

教你用 Python 实现 HashMap 数据结构

Python 中更优雅的日志记录方案

如何用 Python 操作 Docker?

在手机上 Python 编程,可以试试它!


如果你觉得本文有帮助
请慷慨分享点赞,感谢啦
浏览 21
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报