Prometheus 长期远程存储方案 VictoriaMetrics 入门实践

共 20834字,需浏览 42分钟

 ·

2022-04-27 21:17

VictoriaMetrics(简称VM) 是一个支持高可用、经济高效且可扩展的监控解决方案和时间序列数据库,可用于 Prometheus 监控数据做长期远程存储。

前面章节我们介绍了 Thanos 方案也可以用来解决 Prometheus 的高可用和远程存储的问题,那么为什么我们还要使用 VictoriaMetrics 呢?相对于 Thanos,VictoriaMetrics 主要是一个可水平扩容的本地全量持久化存储方案,VictoriaMetrics 不仅仅是时序数据库,它的优势主要体现在以下几点。

  • 对外支持 Prometheus 相关的 API,可以直接用于 Grafana 作为 Prometheus 数据源使用
  • 指标数据摄取和查询具备高性能和良好的可扩展性,性能比 InfluxDB 和 TimescaleDB 高出 20 倍
  • 这处理高基数时间序列时,内存方面也做了优化,比 InfluxDB 少 10x 倍,比 Prometheus、Thanos 或 Cortex 少 7 倍
  • 高性能的数据压缩方式,与 TimescaleDB 相比,可以将多达 70 倍的数据点存入有限的存储空间,与 Prometheus、Thanos 或 Cortex 相比,所需的存储空间减少 7 倍
  • 它针对具有高延迟 IO 和低 IOPS 的存储进行了优化
  • 提供全局的查询视图,多个 Prometheus 实例或任何其他数据源可能会将数据摄取到 VictoriaMetrics
  • 操作简单
    • VictoriaMetrics 由一个没有外部依赖的小型可执行文件组成
    • 所有的配置都是通过明确的命令行标志和合理的默认值完成的
    • 所有数据都存储在 - storageDataPath 命令行参数指向的目录中
    • 可以使用 vmbackup/vmrestore 工具轻松快速地从实时快照备份到 S3 或 GCS 对象存储中
  • 支持从第三方时序数据库获取数据源
  • 由于存储架构,它可以保护存储在非正常关机(即 OOM、硬件重置或 kill -9)时免受数据损坏
  • 同样支持指标的 relabel 操作

架构

VM 分为单节点和集群两个方案,根据业务需求选择即可。单节点版直接运行一个二进制文件既,官方建议采集数据点(data points)低于 100w/s,推荐 VM 单节点版,简单好维护,但不支持告警。集群版支持数据水平拆分。下图是 VictoriaMetrics 集群版官方的架构图。

主要包含以下几个组件:

  • vmstorage:数据存储以及查询结果返回,默认端口为 8482
  • vminsert:数据录入,可实现类似分片、副本功能,默认端口 8480
  • vmselect:数据查询,汇总和数据去重,默认端口 8481
  • vmagent:数据指标抓取,支持多种后端存储,会占用本地磁盘缓存,默认端口 8429
  • vmalert:报警相关组件,不如果不需要告警功能可以不使用该组件,默认端口为 8880

集群方案把功能拆分为 vmstorage、 vminsert、vmselect 组件,如果要替换 Prometheus,还需要使用 vmagent、vmalert。从上图也可以看出 vminsert 以及 vmselect 都是无状态的,所以扩展很简单,只有 vmstorage 是有状态的。

vmagent 的主要目的是用来收集指标数据然后存储到 VM 以及 Prometheus 兼容的存储系统中(支持 remote_write 协议即可)。

下图是 vmagent 的一个简单架构图,可以看出该组件也实现了 metrics 的 push 功能,此外还有很多其他特性:

  • 替换 prometheus 的 scraping target
  • 支持基于 prometheus relabeling 的模式添加、移除、修改 labels,可以方便在数据发送到远端存储之前进行数据的过滤
  • 支持多种数据协议,influx line 协议,graphite 文本协议,opentsdb 协议,prometheus remote write 协议,json lines 协议,csv 数据
  • 支持收集数据的同时,并复制到多种远端存储系统
  • 支持不可靠远端存储(通过本地存储 -remoteWrite.tmpDataPath ),同时支持最大磁盘占用
  • 相比 prometheus 使用较少的内存、cpu、磁盘 io 以及网络带宽

接下来我们就分别来介绍了 VM 的单节点和集群两个方案的使用。

单节点

这里我们采集 node-exporter 为例进行说明,首先使用 Prometheus 采集数据,然后将 Prometheus 数据远程写入 VM 远程存储,由于 VM 提供了 vmagent 组件,最后我们使用 VM 来完全替换 Prometheus,可以使架构更简单、更低的资源占用。

这里我们将所有资源运行在 kube-vm 命名空间之下:

☸ ➜ kubectl create ns kube-vm

首先我们这 kube-vm 命名空间下面使用 DaemonSet 控制器运行 node-exporter,对应的资源清单文件如下所示:

# vm-node-exporter.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: kube-vm
spec:
  selector:
    matchLabels:
      app: node-exporter
  template:
    metadata:
      labels:
        app: node-exporter
    spec:
      hostPID: true
      hostIPC: true
      hostNetwork: true
      nodeSelector:
        kubernetes.io/os: linux
      containers:
        - name: node-exporter
          image: prom/node-exporter:v1.3.1
          args:
            - --web.listen-address=$(HOSTIP):9111
            - --path.procfs=/host/proc
            - --path.sysfs=/host/sys
            - --path.rootfs=/host/root
            - --no-collector.hwmon # 禁用不需要的一些采集器
            - --no-collector.nfs
            - --no-collector.nfsd
            - --no-collector.nvme
            - --no-collector.dmi
            - --no-collector.arp
            - --collector.filesystem.ignored-mount-points=^/(dev|proc|sys|var/lib/containerd/.+|/var/lib/docker/.+|var/lib/kubelet/pods/.+)($|/)
            - --collector.filesystem.ignored-fs-types=^(autofs|binfmt_misc|cgroup|configfs|debugfs|devpts|devtmpfs|fusectl|hugetlbfs|mqueue|overlay|proc|procfs|pstore|rpc_pipefs|securityfs|sysfs|tracefs)$
          ports:
            - containerPort: 9111
          env:
            - name: HOSTIP
              valueFrom:
                fieldRef:
                  fieldPath: status.hostIP
          resources:
            requests:
              cpu: 150m
              memory: 180Mi
            limits:
              cpu: 150m
              memory: 180Mi
          securityContext:
            runAsNonRoot: true
            runAsUser: 65534
          volumeMounts:
            - name: proc
              mountPath: /host/proc
            - name: sys
              mountPath: /host/sys
            - name: root
              mountPath: /host/root
              mountPropagation: HostToContainer
              readOnly: true
      tolerations: # 添加容忍
        - operator: "Exists"
      volumes:
        - name: proc
          hostPath:
            path: /proc
        - name: dev
          hostPath:
            path: /dev
        - name: sys
          hostPath:
            path: /sys
        - name: root
          hostPath:
            path: /

由于前面章节中我们也创建了 node-exporter,为了防止端口冲突,这里我们使用参数 --web.listen-address=$(HOSTIP):9111 配置端口为 9111。直接应用上面的资源清单即可。

☸ ➜ kubectl apply -f vm-node-exporter.yaml
☸ ➜ kubectl get pods -n kube-vm -owide
NAME                  READY   STATUS    RESTARTS   AGE    IP              NODE      NOMINATED NODE   READINESS GATES
node-exporter-c4d76   1/1     Running   0          118s   192.168.0.109   node2                
node-exporter-hzt8s   1/1     Running   0          118s   192.168.0.111   master1              
node-exporter-zlxwb   1/1     Running   0          118s   192.168.0.110   node1                

然后重新部署一套独立的 Prometheus,为了简单我们直接使用 static_configs 静态配置方式来抓取 node-exporter 的指标,配置清单如下所示:

# vm-prom-config.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: kube-vm
data:
  prometheus.yaml: |
    global:
      scrape_interval: 15s
      scrape_timeout: 15s
    scrape_configs:
    - job_name: "nodes"
      static_configs:
      - targets: ['192.168.0.109:9111', '192.168.0.110:9111', '192.168.0.111:9111']
      relabel_configs: # 通过 relabeling 从 __address__ 中提取 IP 信息,为了后面验证 VM 是否兼容 relabeling
      - source_labels: [__address__]
        regex: "(.*):(.*)"
        replacement: "${1}"
        target_label: 'ip'
        action: replace

上面配置中通过 relabel 操作从 __address__ 中将 IP 信息提取出来,后面可以用来验证 VM 是否兼容 relabel 操作。

同样要给 Prometheus 数据做持久化,所以也需要创建一个对应的 PVC 资源对象:

# apiVersion: storage.k8s.io/v1
# kind: StorageClass
# metadata:
#   name: local-storage
# provisioner: kubernetes.io/no-provisioner
# volumeBindingMode: WaitForFirstConsumer
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: prometheus-data
spec:
  accessModes:
    - ReadWriteOnce
  capacity:
    storage: 20Gi
  storageClassName: local-storage
  local:
    path: /data/k8s/prometheus
  persistentVolumeReclaimPolicy: Retain
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
                - node2
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: prometheus-data
  namespace: kube-vm
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 20Gi
  storageClassName: local-storage

然后直接创建 Prometheus 即可,将上面的 PVC 和 ConfigMap 挂载到容器中,通过 --config.file 参数指定配置文件文件路径,指定 TSDB 数据路径等,资源清单文件如下所示:

# vm-prom-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus
  namespace: kube-vm
spec:
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      volumes:
        - name: data
          persistentVolumeClaim:
            claimName: prometheus-data
        - name: config-volume
          configMap:
            name: prometheus-config
      containers:
        - image: prom/prometheus:v2.35.0
          name: prometheus
          args:
            - "--config.file=/etc/prometheus/prometheus.yaml"
            - "--storage.tsdb.path=/prometheus" # 指定tsdb数据路径
            - "--storage.tsdb.retention.time=2d"
            - "--web.enable-lifecycle" # 支持热更新,直接执行localhost:9090/-/reload立即生效
          ports:
            - containerPort: 9090
              name: http
          securityContext:
            runAsUser: 0
          volumeMounts:
            - mountPath: "/etc/prometheus"
              name: config-volume
            - mountPath: "/prometheus"
              name: data
---
apiVersion: v1
kind: Service
metadata:
  name: prometheus
  namespace: kube-vm
spec:
  selector:
    app: prometheus
  type: NodePort
  ports:
    - name: web
      port: 9090
      targetPort: http

直接应用上面的资源清单即可。

☸ ➜ kubectl apply -f vm-prom-config.yaml
☸ ➜ kubectl apply -f vm-prom-pvc.yaml
☸ ➜ kubectl apply -f vm-prom-deploy.yaml
☸ ➜ kubectl get pods -n kube-vm -owide
NAME                      READY   STATUS    RESTARTS   AGE     IP              NODE      NOMINATED NODE   READINESS GATES
node-exporter-c4d76       1/1     Running   0          27m     192.168.0.109   node2                
node-exporter-hzt8s       1/1     Running   0          27m     192.168.0.111   master1              
node-exporter-zlxwb       1/1     Running   0          27m     192.168.0.110   node1                
prometheus-dfc9f6-2w2vf   1/1     Running   0          4m58s   10.244.2.102    node2                
☸ ➜ kubectl get svc -n kube-vm
NAME         TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
prometheus   NodePort   10.103.38.114           9090:31890/TCP   4m10s

部署完成后可以通过 http://:31890 访问 Prometheus,正常可以看到采集的 3 个 node 节点的指标任务。

同样的方式重新部署 Grafana,资源清单如下所示:

# vm-grafana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: grafana
  namespace: kube-vm
spec:
  selector:
    matchLabels:
      app: grafana
  template:
    metadata:
      labels:
        app: grafana
    spec:
      volumes:
        - name: storage
          persistentVolumeClaim:
            claimName: grafana-data
      containers:
        - name: grafana
          image: grafana/grafana:main
          imagePullPolicy: IfNotPresent
          ports:
            - containerPort: 3000
              name: grafana
          securityContext:
            runAsUser: 0
          env:
            - name: GF_SECURITY_ADMIN_USER
              value: admin
            - name: GF_SECURITY_ADMIN_PASSWORD
              value: admin321
          volumeMounts:
            - mountPath: /var/lib/grafana
              name: storage
---
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: kube-vm
spec:
  type: NodePort
  ports:
    - port: 3000
  selector:
    app: grafana
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: grafana-data
spec:
  accessModes:
    - ReadWriteOnce
  capacity:
    storage: 1Gi
  storageClassName: local-storage
  local:
    path: /data/k8s/grafana
  persistentVolumeReclaimPolicy: Retain
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
                - node2
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: grafana-data
  namespace: kube-vm
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: local-storage
☸ ➜ kubectl apply -f vm-grafana.yaml
☸ ➜ kubectl get svc -n kube-vm |grep grafana
grafana      NodePort   10.97.111.153           3000:31800/TCP   62s

同样通过 http://:31800 就可以访问 Grafana 了,进入 Grafana 配置 Prometheus 数据源。

然后导入 16098 这个 Dashboard,导入后效果如下图所示。

到这里就完成了使用 Prometheus 收集节点监控指标,接下来我们来使用 VM 来改造现有方案。

远程存储 VictoriaMetrics

首先需要一个单节点模式的 VM,运行 VM 很简单,可以直接下载对应的二进制文件启动,也可以使用 docker 镜像一键启动,我们这里同样部署到 Kubernetes 集群中。资源清单文件如下所示。

# vm-grafana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: victoria-metrics
  namespace: kube-vm
spec:
  selector:
    matchLabels:
      app: victoria-metrics
  template:
    metadata:
      labels:
        app: victoria-metrics
    spec:
      volumes:
        - name: storage
          persistentVolumeClaim:
            claimName: victoria-metrics-data
      containers:
        - name: vm
          image: victoriametrics/victoria-metrics:v1.76.1
          imagePullPolicy: IfNotPresent
          args:
            - -storageDataPath=/var/lib/victoria-metrics-data
            - -retentionPeriod=1w
          ports:
            - containerPort: 8428
              name: http
          volumeMounts:
            - mountPath: /var/lib/victoria-metrics-data
              name: storage
---
apiVersion: v1
kind: Service
metadata:
  name: victoria-metrics
  namespace: kube-vm
spec:
  type: NodePort
  ports:
    - port: 8428
  selector:
    app: victoria-metrics
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: victoria-metrics-data
spec:
  accessModes:
    - ReadWriteOnce
  capacity:
    storage: 20Gi
  storageClassName: local-storage
  local:
    path: /data/k8s/vm
  persistentVolumeReclaimPolicy: Retain
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
                - node2
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: victoria-metrics-data
  namespace: kube-vm
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 20Gi
  storageClassName: local-storage

这里我们使用 -storageDataPath 参数指定了数据存储目录,然后同样将该目录进行了持久化,-retentionPeriod 参数可以用来配置数据的保持周期。直接应用上面的资源清单即可。

☸ ➜ kubectl apply -f vm-single-node-deploy.yaml
☸ ➜ kubectl get svc victoria-metrics -n kube-vm
NAME               TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
victoria-metrics   NodePort   10.106.216.248           8428:31953/TCP   75m
☸ ➜ kubectl get pods -n kube-vm -l app=victoria-metrics
NAME                                READY   STATUS    RESTARTS   AGE
victoria-metrics-57d47f4587-htb88   1/1     Running   0          3m12s
☸ ➜ kubectl logs -f victoria-metrics-57d47f4587-htb88 -n kube-vm
2022-04-22T08:59:14.431Z        info    VictoriaMetrics/lib/logger/flag.go:12   build version: victoria-metrics-20220412-134346-tags-v1.76.1-0-gf8de318bf
2022-04-22T08:59:14.431Z        info    VictoriaMetrics/lib/logger/flag.go:13   command line flags
2022-04-22T08:59:14.431Z        info    VictoriaMetrics/lib/logger/flag.go:20   flag "retentionPeriod"="1w"
2022-04-22T08:59:14.431Z        info    VictoriaMetrics/lib/logger/flag.go:20   flag "storageDataPath"="/var/lib/victoria-metrics-data"
2022-04-22T08:59:14.431Z        info    VictoriaMetrics/app/victoria-metrics/main.go:52 starting VictoriaMetrics at ":8428"...
2022-04-22T08:59:14.432Z        info    VictoriaMetrics/app/vmstorage/main.go:97        opening storage at "/var/lib/victoria-metrics-data" with -retentionPeriod=1w
......
2022-04-22T08:59:14.449Z        info    VictoriaMetrics/app/victoria-metrics/main.go:61 started VictoriaMetrics in 0.017 seconds
2022-04-22T08:59:14.449Z        info    VictoriaMetrics/lib/httpserver/httpserver.go:91 starting http server at http://127.0.0.1:8428/

到这里我们单节点的 VictoriaMetrics 就部署成功了。接下来我们只需要在 Prometheus 中配置远程写入我们的 VM 即可,更改 Prometheus 配置:

# vm-prom-config2.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: kube-vm
data:
  prometheus.yaml: |
    global:
      scrape_interval: 15s
      scrape_timeout: 15s
    remote_write:    # 远程写入到远程 VM 存储
    - url: http://victoria-metrics:8428/api/v1/write
    scrape_configs:
    - job_name: "nodes"
      static_configs:
      - targets: ['192.168.0.109:9111', '192.168.0.110:9111', '192.168.0.111:9111']
      relabel_configs: # 通过 relabeling 从 __address__ 中提取 IP 信息,为了后面验证 VM 是否兼容 relabeling
      - source_labels: [__address__]
        regex: "(.*):(.*)"
        replacement: "${1}"
        target_label: 'ip'
        action: replace

重新更新 Prometheus 的配置资源对象:

☸ ➜ kubectl apply -f vm-prom-config2.yaml
# 更新后执行 reload 操作重新加载 prometheus 配置
☸ ➜ curl -X POST "http://192.168.0.111:31890/-/reload"

配置生效后 Prometheus 就会开始将数据远程写入 VM 中,我们可以查看 VM 的持久化数据目录是否有数据产生来验证:

☸ ➜ ll /data/k8s/vm/data/
total 0
drwxr-xr-x 4 root root 38 Apr 22 17:15 big
-rw-r--r-- 1 root root  0 Apr 22 16:59 flock.lock
drwxr-xr-x 4 root root 38 Apr 22 17:15 small

现在我们去直接将 Grafana 中的数据源地址修改成 VM 的地址:

修改完成后重新访问 node-exporter 的 dashboard,正常可以显示,证明 VM 是兼容的。

替换 Prometheus

上面我们将 Prometheus 数据远程写入到了 VM,但是 Prometheus 开启 remote write 功能后会增加其本身的资源占用,理论上其实我们也可以完全用 VM 来替换掉 Prometheus,这样就不需要远程写入了,而且本身 VM 就比 Prometheus 占用更少的资源。

现在我们先停掉 Prometheus 的服务:

☸ ➜ kubectl scale deploy prometheus --replicas=0 -n kube-vm

然后将 Prometheus 的配置文件挂载到 VM 容器中,使用参数 -promscrape.config 来指定 Prometheus 的配置文件路径,如下所示:

# vm-single-node-deploy2.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: victoria-metrics
  namespace: kube-vm
spec:
  selector:
    matchLabels:
      app: victoria-metrics
  template:
    metadata:
      labels:
        app: victoria-metrics
    spec:
      volumes:
        - name: storage
          persistentVolumeClaim:
            claimName: victoria-metrics-data
        - name: prometheus-config
          configMap:
            name: prometheus-config
      containers:
        - name: vm
          image: victoriametrics/victoria-metrics:v1.76.1
          imagePullPolicy: IfNotPresent
          args:
            - -storageDataPath=/var/lib/victoria-metrics-data
            - -retentionPeriod=1w
            - -promscrape.config=/etc/prometheus/prometheus.yaml
          ports:
            - containerPort: 8428
              name: http
          volumeMounts:
            - mountPath: /var/lib/victoria-metrics-data
              name: storage
            - mountPath: /etc/prometheus
              name: prometheus-config

记得先将 Prometheus 配置文件中的 remote_write 模块去掉,然后重新更新 VM 即可:

☸ ➜ kubectl apply -f vm-prom-config.yaml
☸ ➜ kubectl apply -f vm-single-node-deploy2.yaml
☸ ➜ kubectl get pods -n kube-vm -l app=victoria-metrics
NAME                                READY   STATUS    RESTARTS       AGE
victoria-metrics-8466844968-ncfnp   1/1     Running   2 (3m3s ago)   3m45s
☸ ➜ kubectl logs -f victoria-metrics-8466844968-ncfnp -n kube-vm
......
2022-04-22T10:01:59.837Z        info    VictoriaMetrics/app/victoria-metrics/main.go:61 started VictoriaMetrics in 0.022 seconds
2022-04-22T10:01:59.837Z        info    VictoriaMetrics/lib/httpserver/httpserver.go:91 starting http server at http://127.0.0.1:8428/
2022-04-22T10:01:59.837Z        info    VictoriaMetrics/lib/httpserver/httpserver.go:92 pprof handlers are exposed at http://127.0.0.1:8428/debug/pprof/
2022-04-22T10:01:59.838Z        info    VictoriaMetrics/lib/promscrape/scraper.go:103   reading Prometheus configs from "/etc/prometheus/prometheus.yaml"
2022-04-22T10:01:59.838Z        info    VictoriaMetrics/lib/promscrape/config.go:96     starting service discovery routines...
2022-04-22T10:01:59.839Z        info    VictoriaMetrics/lib/promscrape/config.go:102    started service discovery routines in 0.000 seconds
2022-04-22T10:01:59.840Z        info    VictoriaMetrics/lib/promscrape/scraper.go:395   static_configs: added targets: 3, removed targets: 0; total targets: 3

从 VM 日志中可以看出成功读取了 Prometheus 的配置,并抓取了 3 个指标(node-exporter)。现在我们再去 Grafana 查看 node-exporter 的 Dashboard 是否可以正常显示。先保证数据源是 VM 的地址。

这样我们就使用 VM 替换掉了 Prometheus,我们也可以这 Grafana 的 Explore 页面去探索采集到的指标。

UI 界面

VM 单节点版本本身自带了一个 Web UI 界面 - vmui,不过目前功能比较简单,可以直接通过 VM 的 NodePort 端口进行访问。

☸ ➜ kubectl get svc victoria-metrics -n kube-vm
NAME               TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
victoria-metrics   NodePort   10.106.216.248           8428:31953/TCP   75m

我们这里可以通过 http://:31953 访问到 vmui:

可以通过 /vmui 这个 endpoint 访问 UI 界面:

如果你想查看采集到的指标 targets,那么可以通过 /targets 这个 endpoint 来获取:

这些功能基本上可以满足我们的一些需求,但是还是太过简单,如果你习惯了 Prometheus 的 UI 界面,那么我们可以使用 promxy 来代替 vmui,而且 promxy 还可以进行多个 VM 单节点的数据聚合,以及 targets 查看等,对应的资源清单文件如下所示:

# vm-promxy.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: promxy-config
  namespace: kube-vm
data:
  config.yaml: |
    promxy:
      server_groups:
      - static_configs:
        - targets: [victoria-metrics:8428]  # 指定vm地址,有多个则往后追加即可
        path_prefix: /prometheus  # 配置前缀
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: promxy
  namespace: kube-vm
spec:
  selector:
    matchLabels:
      app: promxy
  template:
    metadata:
      labels:
        app: promxy
    spec:
      containers:
        - args:
            - "--config=/etc/promxy/config.yaml"
            - "--web.enable-lifecycle"
            - "--log-level=trace"
          env:
            - name: ROLE
              value: "1"
          command:
            - "/bin/promxy"
          image: quay.io/jacksontj/promxy
          imagePullPolicy: Always
          name: promxy
          ports:
            - containerPort: 8082
              name: web
          volumeMounts:
            - mountPath: "/etc/promxy/"
              name: promxy-config
              readOnly: true
        - args: # container to reload configs on configmap change
            - "--volume-dir=/etc/promxy"
            - "--webhook-url=http://localhost:8082/-/reload"
          image: jimmidyson/configmap-reload:v0.1
          name: promxy-server-configmap-reload
          volumeMounts:
            - mountPath: "/etc/promxy/"
              name: promxy-config
              readOnly: true
      volumes:
        - configMap:
            name: promxy-config
          name: promxy-config
---
apiVersion: v1
kind: Service
metadata:
  name: promxy
  namespace: kube-vm
spec:
  type: NodePort
  ports:
    - port: 8082
  selector:
    app: promxy

直接应用上面的资源对象即可:

☸ ➜ kubectl apply -f vm-promxy.yaml
☸ ➜ kubectl get pods -n kube-vm -l app=promxy
NAME                      READY   STATUS    RESTARTS   AGE
promxy-5f7dfdbc64-l4kjq   2/2     Running   0          6m45s
☸ ➜ kubectl get svc promxy -n kube-vm
NAME               TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
promxy             NodePort   10.110.19.254            8082:30618/TCP   6m12s

访问 Promxy 的页面效果和 Prometheus 自带的 Web UI 基本一致的。

这里面我们简单介绍了单机版的 victoriametrics 的基本使用。关于集群版的使用请关注后续文章。

浏览 100
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报