量化分析预测股市?试试这个 Python 库

!pip install quandl!pip install fbprophet!pip install plotly
from stocker importStocker现在在 Python 代码中有 Stocker 类,我们可以使用它来创建该类的实例。在 Python 中,类的实例称为对象,创建对象的行为有时称为实例化或构造。为了创建 Stocker 对象,我们需要传入有效股票代码的名称。
# MSFT Stocker Initialized. Data covers 1986-03-13 to 2018-01-16.microsoft = Stocker('MSFT')
MSFT StockerInitialized. Data covers 1986-03-1300:00:00 to 2018-03-2700:00:00.microsoft 对象。Stocker 建立在 quandl WIKI 数据库上,该数据库使我们可以访问 3000 多只美国股票以及多年的每日价格数据(完整列表)。对于此示例,我们将坚持使用 Microsoft 数据。因为微软正在拥抱开源社区(包括 Python)。# Stock is an attribute of the microsoft objectstock_history = microsoft.stockstock_history.head()
# A method (function) requires parenthesesmicrosoft.plot_stock()
MaximumAdj. Close= 96.77 on 2018-03-1200:00:00.MinimumAdj. Close= 0.06 on 1986-03-2400:00:00.CurrentAdj. Close= 89.47 on 2018-03-2700:00:00.

plot_stock 函数有许多可选参数。默认情况下,此方法绘制整个日期范围的调整后收盘价,但我们可以选择范围、要绘制的统计数据以及绘图类型。例如,如果我们想将价格的每日变化与调整后的交易量(股票数量)进行比较,我们可以在函数调用中指定这些。microsoft.plot_stock(start_date = '2000-01-03',  end_date = '2018-01-16',  stats = ['Daily Change', 'Adj. Volume'],  plot_type='pct')MaximumDailyChange= 2.08 on 2008-10-1300:00:00.MinimumDailyChange= -3.34 on 2017-12-0400:00:00.CurrentDailyChange= -5.47 on 2018-03-2700:00:00.MaximumAdj. Volume= 591052200.00 on 2006-04-2800:00:00.MinimumAdj. Volume= 7425503.00 on 2017-11-2400:00:00.CurrentAdj. Volume= 53704562.00 on 2018-03-2700:00:00.

plot_stock,我们可以调查任何日期范围内数据中的任何数量,并寻找与现实世界事件的相关性。现在,我们将继续讨论 Stocker 中更有趣的部分之一:赚假钱!microsoft.buy_and_hold(start_date='1986-03-13', end_date='2018-01-16', nshares=100)MSFT Total buy and hold profit from1986-03-13 to 2018-01-16for100 shares = $8829.11
model, model_data = microsoft.create_prophet_model()
model.plot_components(model_data)plt.show()

weekly_seasonality 属性将其添加到先知模型中:print(microsoft.weekly_seasonality)microsoft.weekly_seasonality = Trueprint(microsoft.weekly_seasonality)
FalseTrue
weekly_seasonality 的默认值为 False,但我们更改了该值以在我们的模型中包含每周模式。然后我们再次调用 create_prophet_model 并绘制结果组件。microsoft.changepoint_date_analysis()Changepoints sorted by slope rate of change (2nd derivative):DateAdj. Close delta4102016-09-0855.811396-1.3780933382016-05-2650.1134531.1167202172015-12-0252.572008-0.8823594582016-11-1557.5898190.603127482015-04-0237.6125900.442776

microsoft.changepoint_date_analysis(search = 'Microsoft profit')TopRelatedQueries:query value0 microsoft non profit 1001 microsoft office 602 apple profit 403 microsoft 365404 apple 35RisingRelatedQueries:query value0 apple stock 1701 microsoft 3651302 apple profit 50

“Microsoft profit”与微软股价之间似乎没有相关性。microsoft.changepoint_date_analysis(search = 'Microsoft Office')TopRelatedQueries:query value0 microsoft office download 1001 microsoft office 2010902 office 2010853 microsoft office 2013754 office 201370RisingRelatedQueries:query value0 microsoft office 2016 key 803001 office 2016732002 download microsoft office 2016721503 microsoft office 2016 mac 693504 microsoft office 201667650

Microsoft Office 的搜索量下降会导致股价上涨。也许有人应该让微软知道。model, future = microsoft.create_prophet_model(days=180)PredictedPrice on 2018-07-21= $102.40

E N D

评论
