微软面试题:红帽子与黑帽子

共 1249字,需浏览 3分钟

 ·

2021-05-01 02:23



01
故事起源
一群人开舞会,每人都戴着一顶帽子。帽子只有红和黑两种,其中黑的至少有一顶。每个人能看到其它人的帽子颜色,但看不到自己的。
大家先一起做一个游戏,规则如下:
所有人先看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的黑帽子,就打自己一个耳光。
游戏开始:
第一次关灯,没有声音。
于是打开灯再看一遍,第二次关灯,依然鸦雀无声。
一直到第三次关灯,才有声音响起。
问:有多少人戴着黑帽子?


02

分析

假设有5个红帽子,和5个黑帽子。
对于红帽子的人,他看到的是有4个红帽子,和5个黑帽子。
对于黑帽子的人,他看到的是有5个红帽子,和4个黑帽子。
那么第一次关灯,对于任何一个人,只能得到上面的信息,他是无法判断自己的帽子颜色的,所以肯定啥也不发生。


03

寻找突破口

题目是问戴黑帽子的有几个人,跟具体人数相关。但我们再回到题目描述,并没有给总共多少人,也没有说红帽子有多少人,只有一个跟数字相关的条件,就是戴黑帽子的至少有一人,这就是突破口。
所以这类的问题都可以从题目的信息量上面寻找突破口。
没有说红帽子有多少人,说明解题的思路肯定跟红帽子没什么关系,有多少都无所谓,那就从黑帽子开始思考。


04

小规模简单场景

4.1
假设只有1个黑帽子
对于每一个红帽子,他看到的场景是这样的。第一次关灯他们都无法确定自己帽子的颜色。
对于唯一的一个黑帽子,他看到的场景是这样的。因为至少有一个黑帽子,他没有看到,所以推出自己一定是黑帽子,第一次关灯声音响起。

4.2
假设有2个黑帽子
对于每一个红帽子,他看到的场景是这样的。第一次关灯他们是无法判断的。
对于2个黑帽子,他看到的场景是这样的。
第一次关灯,他们都在等对方打耳光,所以什么也不会发生。
因为第一次没有声音,这时他俩都知道,第一次对方在等自己打耳光。所以这时他们都可以判断自己是黑帽子,第二次关灯声音响起。

4.3
假设有3个黑帽子
对于红帽子的人来说,一定比黑帽子的人后得到有效信息,所以暂不考虑。
对于其中的每一个黑帽子,他们认为2次之后对方可以发现,结果两次之后因为都在等,不会有声音,那第三次都可以判断自己是黑帽子了。

4.4
假设有N个黑帽子
根据上面分析,可以推论第N次声音响起。所以题目第3次有声音,也就意味着有3个黑帽子。


05

总结

对于所有的红帽子,他们的地位是相同的,也就是视角永远一样,对黑帽子也同样成立,所以如果有信息就会是同时得到,而不是一些人先发现。那这个问题就分红黑两类来考虑就行了。这也是属于博弈论相关的问题,可以先考虑小数据的简单场景。

✄------------------------------------------------


双一流高校研究生团队创建 ↓

专注于计算机视觉原创并分享相关知识 


浏览 26
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报