Spark调优 | Spark OOM问题常见解决方式
数据分析挖掘与算法
共 5149字,需浏览 11分钟
·
2021-11-19 23:11
Spark OOM 问题分析
Spark常见的问题不外乎OOM。我们首先看一下Spark 的内存模型:Spark在一个Executor中的内存分为三块,一块是execution内存,一块是storage内存,一块是other内存。
Execution内存是执行内存,文档中说join,aggregate都在这部分内存中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO。其实map过程也是在这个内存中执行的。
Storage内存是存储broadcast,cache,persist数据的地方。
Other内存是程序执行时预留给自己的内存。
Spark OOM 常见场景
map执行中内存溢出
shuffle后内存溢出
driver内存溢出
1.1. 考虑将该大对象转化成Executor端加载. 例如调用sc.textFile/sc.hadoopFile等
1.2. 如若无法避免, 自我评估该大对象占用的内存, 相应增加driver-memory的值
解决思路:
2.1. 本身不建议将大的数据从Executor端, collect回来. 建议将Driver端对collect回来的数据所做的操作, 转化成Executor端RDD操作.
2.2. 如若无法避免, 自我评collect需要的内存, 相应增加driver-memory的值
解决思路:
3.1. 考虑缩小大numPartitions的Stage的partition个数, 例如从HDFS load的partitions一般自动计算, 但是后续用户的操作中做了过滤等操作已经大大减少数据量, 此时可以缩小Parititions。
3.2. 通过参数spark.ui.retainedStages(默认1000)/spark.ui.retainedJobs(默认1000)控制.
3.3. 实在没法避免, 相应增加内存.
Executor heap OOM
解决方法:
2. 增加Executor memory的大小 --executor-memory 5G
3. 减少reduce task每次拉取的数据量 设置spak.reducer.maxSizeInFlight 24m, 拉取的次数就多了,因此建立连接的次数增多,有可能会连接不上(正好赶上map task端进行GC)
当出现以下异常时:shuffle file cannot find,executor lost、task lost,out of memory,可以调节
2.2 建立连接成功,map task所运行的executor正在GC
解决方法:
3.1. 增大Executor内存(即堆内内存) ,申请的堆外内存也会随之增加--executor-memory 5G
3.2. 增大堆外内存
--conf spark.executor.memoryoverhead 2048M
默认申请的堆外内存是Executor内存的10%,真正处理大数据的时候,这里都会出现问题,导致spark作业反复崩溃,无法运行;此时就会去调节这个参数,到至少1G(1024M),甚至说2G、4G
Shuffle过程中可调的参数
spark.shuffle.file.buffe
参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
spark.reducer.maxSizeInFlight
参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
错误:reduce oom
reduce task去map拉数据,reduce 一边拉数据一边聚合 reduce段有一块聚合内存(executor memory * 0.2)
解决办法:1、增加reduce 聚合的内存的比例 设置spark.shuffle.memoryFraction
2、 增加executor memory的大小 --executor-memory 5G
3、减少reduce task每次拉取的数据量 设置spark.reducer.maxSizeInFlight 24m
spark.shuffle.io.maxRetries
参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
shuffle file not find taskScheduler不负责重试task,由DAGScheduler负责重试stage
spark.shuffle.io.retryWait
参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。
默认值:0.2
参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。
spark.shuffle.manager
参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。
spark.shuffle.sort.bypassMergeThreshold
参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
spark.shuffle.consolidateFiles
参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。
Hive计算最大连续登陆天数
Hadoop 数据迁移用法详解
Hbase修复工具Hbck
数仓建模分层理论
一文搞懂Hive的数据存储与压缩
大数据组件重点学习这几个
评论