李飞飞高徒盘点年度十大AI亮点:扩散模型成最大赢家!多模态正在爆...
转载自:新智元 | 编辑: Aeneas 昕朋
【导读】 2022年有哪些人工智能的突破?今天,李飞飞高徒Jim Fan盘点了年度十大AI亮点。
人工智能的爆炸正在扭曲我们 的时间感。
你能相信Stable Diffusion只有4个月大,而ChatGPT的出现还不到一个月吗?
打个形象的比喻,只要眨一下眼,你就会错过一个全新的行业。
2022年的AI领域,大规模的生成模型像雨后春笋一样地冒出,改变了整个AI界的格局。
而且,这些模型正在迅速走出实验室,在现实中被应用。
比如,LLM技术就启发了两个新兴的领域——决策代理(游戏、机器人等等)和 AI4Science。
李飞飞高徒Jim Fan为我们总结了2022年的十大AI高光时刻。让我们把时间倒转,看看2022年都有哪些令人惊叹的AI突破。

一、文字-图像生成
DALLE-2是第一个可以从任意标题生成逼真的高分辨率图像的大规模扩散模型。
它启动了AI的艺术革命,催生了许多新的应用程序、初创公司和思维方式。


另外,今年还有来自GoogleAI的两个image2text模型。GoogleAI既没有发布模型也没有发布API,但从论文中,我们仍然可以看到不少有趣的见解。
Imagen
https://imagen.research.google

Parti
https://parti.research.google。它是一个没有diffusion的Transformer模型。
二、文字-文字生成
大家都知道,我说的是ChatGPT!
ChatGPT和GPT-3.5都使用了一种叫做RLHF(「从人类反馈中强化学习」)的新技术。
这也就意味着,提示工程或许很快就会消失了。
ChatGPT的流行,已经催生了一波新的创业公司和竞争者,比如Jasper Chat、YouChat、
Replit
的Ghostwriter chat,以及
perplexity_ai
。
这些竞争者提供了如此直观的搜索方式,连谷歌的高管们都开始出汗了!

三、文本- 机器人模型
如何给GPT提供胳膊和腿,让它们能打扫你混乱的厨房?
VIMA
10月,我和同事创建了一个 「机器人GPT 」——名为VIMA的tranformer。 它可以接收任何混合的文本、图像和视频作为prompt,并输出机器人手臂的控制。 我们的模型被称为VIMA(「VisuoMotor Attention」),已经完全开源了。 现在,单个智能体已经能够解决视觉目标、视频的一次性模仿、新概念基础、视觉约束等,具有了模型容量和数据的强大扩展性。
RT-1
沿着与VIMA类似的路径,来自GoogleAI的研究人员发布了RT-1,这是一种在700项任务和130K的人类演示上训练的机器人transformer。 这些数据是由13个机器人在17个月内收集的,是字面意义上的钢铁部队!
四、文本 - 视频
本质上说,视频就是随着时间的推移捆绑在一起的一系列图像,给我们创造了运动的错觉。
Make-A-Video
首先是Meta AI的Make-A-Video:不需要成对的文本-视频数据,就可以得到文本-视频的生成。 您可以在此处注册试用访问权限:https://makeavevideo.studio


Imagen Video
Google AI的Imagen Video:它能使用扩散模型生成高清视频,基于Imagen静态图像生成器。 演示:http://imagen.research.google/video/


Phenaki
来自谷歌AI的Phenaki: 从开放领域的文本描述中生成可变长度的视频。 演示:https://phenaki.video


五、文本-3D建模
从设计创新产品到在电影和游戏中创造奇妙的视觉效果,3D建模正成为文本-X生成模型的下一片蓝海。
DreamFusion
首先登场的,是Google AI研究团队与UC Berkeley联合开发的DreamFusion。


Magic3D
第二项成果,是英伟达AI团队的两个项目,名为GET3D和Magic3D。


该模型允许用户立即将其形体导入3D渲染器和游戏引擎,以便进行后续编辑。
Magic3D与DreamFusion类似,使用文本到图像模型生成2D图像,然后优化为体积NeRF(神经辐射场)数据,将低分辨率生成的粗略模型优化为高分辨率的精细模型。
根据英伟达AI团队,由此产生的Magic3D方法,可以比DreamFusion更快地生成3D目标。
Point-E
继年初推出的DALL-E 2用天才画笔惊艳所有人之后,周二OpenAI发布了最新的图像生成模型「POINT-E」,它可通过文本直接生成3D模型。

根据测试,Prompt输入后POINT-E基本可以秒出3D图像,此外输出图像还支持自定义编辑、保存等功能。六、会玩《我的世界》的AI
《我的世界》是一款测试AI通用智能的绝佳游戏。首先,它是一款无限开放的沙盒游戏,极度体现玩家的创造力。
Jim Fan和同事合作开发了第一个玩《我的世界》的AI「MineDojo」,它可以在自然语言提示下解决许多任务。


论文链接:https://arxiv.org/pdf/2206.11795.pdf

七、AI外交官
Meta AI推出的CICERO是第一个在《外交》游戏中实现人类水平表现的人工智能智能体。

目前,DeepMind也宣布开发自己的外交官AI智能体。那么,如果CICERO使用这个AI模型,又会发生什么呢?八、音频-文本模型
Whisper是OpenAI发布的一个大型开源语音识别模型,在英语语音识别方面有接近人类水平的鲁棒性和准确性。

Open AI将Whisper开源,是否是为了解锁更多文本token,用以训练万众瞩目的GPT-4呢?九、核聚变
DeepMind与瑞士洛桑联邦理工学院(EPFL)联合开发了第一个核聚变相关的深度强化学习系统,可以保持核聚变等离子体在托卡马克内的稳定。

这是人类首次实现这一里程碑。这一生,我们或许会成为聚变文明!十、应用于生物学的Transformer
2021年,AlphaFold开启了语言模型预测蛋白质3D结构的序幕。
7月,DeepMind宣布了「蛋白质宇宙」——将AlphaFold的蛋白质数据库扩展到2亿个结构!
此外,英伟达AI研究团队还拓展了BioNeMo大型语言模型的框架,以帮助生物技术公司和研究人员生成、预测和理解生物分子数据。

推荐阅读
全网最全速查表:Python 机器学习
搭建完美的Python 机器学习开发环境
训练集,验证集,测试集,交叉验证
AI 绘画,StableDiffusion本地部署
