使用MySQL,请用好 JSON 这张牌!
互联网架构师后台回复 2T 有特别礼包
JSON(JavaScript Object Notation)主要用于互联网应用服务之间的数据交换。MySQL 支持RFC 7159定义的 JSON 规范,主要有 JSON 对象 和 JSON 数组 两种类型。下面就是 JSON 对象,主要用来存储图片的相关信息:
{"Image": {"Width": 800,"Height": 600,"Title": "View from 15th Floor","Thumbnail": {"Url": "http://www.example.com/image/xx9943","Height": 125,"Width": 100},"IDs": [116, 943, 234, 38793]}}
[{"precision": "zip","Latitude": 37.7668,"Longitude": -122.3959,"Address": "","City": "SAN FRANCISCO","State": "CA","Zip": "94107","Country": "US"},{"precision": "zip","Latitude": 37.371991,"Longitude": -122.026020,"Address": "","City": "SUNNYVALE","State": "CA","Zip": "94085","Country": "US"}]
用户登录设计
DROP TABLE IF EXISTS UserLogin;CREATE TABLE UserLogin (userId BIGINT NOT NULL,loginInfo JSON,PRIMARY KEY(userId));
由于当前业务的登录方式越来越多样化,如同一账户支持手机、微信、QQ 账号登录,所以这里可以用 JSON 类型存储登录的信息。
SET @a = '{"cellphone" : "1","wxchat" : "码农","77" : "1"}';INSERT INTO UserLogin VALUES (1,@a);SET @b = '{"cellphone" : "1188"}';INSERT INTO UserLogin VALUES (2,@b);
SELECTuserId,JSON_UNQUOTE(JSON_EXTRACT(loginInfo,"$.cellphone")) cellphone,JSON_UNQUOTE(JSON_EXTRACT(loginInfo,"$.wxchat")) wxchatFROM UserLogin;+--------+-------------+--------------+| userId | cellphone | wxchat |+--------+-------------+--------------+| 1 | 11| 码农 || 2 | 11| NULL |+--------+-------------+--------------+2 rows in set (0.01 sec)
SELECTuserId,loginInfo->>"$.cellphone" cellphone,loginInfo->>"$.wxchat" wxchatFROM UserLogin;
ALTER TABLE UserLogin ADD COLUMN cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone");ALTER TABLE UserLogin ADD UNIQUE INDEX idx_cellphone(cellphone);
EXPLAIN SELECT * FROM UserLoginWHERE cellphone = '11'\G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: UserLoginpartitions: NULLtype: constpossible_keys: idx_cellphonekey: idx_cellphonekey_len: 1023ref: constrows: 1filtered: 100.00Extra: NULL1 row in set, 1 warning (0.00 sec)
CREATE TABLE UserLogin (userId BIGINT,loginInfo JSON,cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone"),PRIMARY KEY(userId),UNIQUE KEY uk_idx_cellphone(cellphone));
用户画像设计
CREATE TABLE Tags (tagId bigint auto_increment,tagName varchar(255) NOT NULL,primary key(tagId));SELECT * FROM Tags;+-------+--------------+| tagId | tagName |+-------+--------------+| 1 | 70后 || 2 | 80后 || 3 | 90后 || 4 | 00后 || 5 | 爱运动 || 6 | 高学历 || 7 | 小资 || 8 | 有房 || 9 | 有车 || 10 | 常看电影 || 11 | 爱网购 || 12 | 爱外卖 |+-------+--------------+
若不用 JSON 数据类型进行标签存储,通常会将用户标签通过字符串,加上分割符的方式,在一个字段中存取用户所有的标签:
+-------+---------------------------------------+|用户 |标签 |+-------+---------------------------------------+|David |80后 ;高学历 ;小资 ;有房 ;常看电影 ||Tom |90后 ;常看电影 ;爱外卖 |+-------+---------------------------------------
DROP TABLE IF EXISTS UserTag;CREATE TABLE UserTag (userId bigint NOT NULL,userTags JSON,PRIMARY KEY (userId));INSERT INTO UserTag VALUES (1,'[2,6,8,10]');INSERT INTO UserTag VALUES (2,'[3,10,12]');
ALTER TABLE UserTagADD INDEX idx_user_tags ((cast((userTags->"$") as unsigned array)));
EXPLAIN SELECT * FROM UserTagWHERE 10 MEMBER OF(userTags->"$")\G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: UserTagpartitions: NULLtype: refpossible_keys: idx_user_tagskey: idx_user_tagskey_len: 9ref: constrows: 1filtered: 100.00Extra: Using where1 row in set, 1 warning (0.00 sec)SELECT * FROM UserTagWHERE 10 MEMBER OF(userTags->"$");+--------+---------------+| userId | userTags |+--------+---------------+| 1 | [2, 6, 8, 10] || 2 | [3, 10, 12] |+--------+---------------+2 rows in set (0.00 sec)
如果想要查询画像为 80 后,且常看电影的用户,可以使用函数 JSON_CONTAINS:搜索公众号互联网架构师回复“2T”,送你一份惊喜礼包。
EXPLAIN SELECT * FROM UserTagWHERE JSON_CONTAINS(userTags->"$", '[2,10]')\G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: UserTagpartitions: NULLtype: rangepossible_keys: idx_user_tagskey: idx_user_tagskey_len: 9ref: NULLrows: 3filtered: 100.00Extra: Using where1 row in set, 1 warning (0.00 sec)SELECT * FROM UserTagWHERE JSON_CONTAINS(userTags->"$", '[2,10]');+--------+---------------+| userId | userTags |+--------+---------------+| 1 | [2, 6, 8, 10] |+--------+---------------+1 row in set (0.00 sec)
EXPLAIN SELECT * FROM UserTagWHERE JSON_OVERLAPS(userTags->"$", '[2,3,10]')\G*************************** 1. row ***************************id: 1select_type: SIMPLEtable: UserTagpartitions: NULLtype: rangepossible_keys: idx_user_tagskey: idx_user_tagskey_len: 9ref: NULLrows: 4filtered: 100.00Extra: Using where1 row in set, 1 warning (0.00 sec)SELECT * FROM UserTagWHERE JSON_OVERLAPS(userTags->"$", '[2,3,10]');+--------+---------------+| userId | userTags |+--------+---------------+| 1 | [2, 6, 8, 10] || 2 | [3, 10, 12] |+--------+---------------+2 rows in set (0.01 sec)
使用 JSON 数据类型,推荐用 MySQL 8.0.17 以上的版本,性能更好,同时也支持 Multi-Valued Indexes
不要将有明显关系型的数据用 JSON 存储,如用户余额、用户姓名、用户身份证等,这些都是每个用户必须包含的数据;
JSON 数据类型推荐使用在不经常更新的静态数据存储。
正文结束
1.心态崩了!税前2万4,到手1万4,年终奖扣税方式1月1日起施行~

评论
