还在用 requests 写爬虫吗?这个库效率提高不止一倍!

逆锋起笔

共 3153字,需浏览 7分钟

 ·

2021-11-15 19:27

最近公司  Python 后端项目进行重构,整个后端逻辑基本都变更为采用"异步"协程的方式实现。看着满屏幕经过 async await(协程在 Python 中的实现)修饰的代码,我顿时感到一脸懵逼,不知所措。


虽然之前有了解过"协程"是什么东西,但并没有深入探索,于是正好借着这次机会可以好好学习一下。


什么是协程?

简单来说,协程是一种基于线程之上,但又比线程更加轻量级的存在。对于系统内核来说,协程具有不可见的特性,所以这种由 程序员自己写程序来管理 的轻量级线程又常被称作 "用户空间线程"。


协程比多线程好在哪呢?

1. 线程的控制权在操作系统手中,而 协程的控制权完全掌握在用户自己手中,因此利用协程可以减少程序运行时的上下文切换,有效提高程序运行效率。


2. 建立线程时,系统默认分配给线程的 栈 大小是 1 M,而协程更轻量,接近 1 K 。因此可以在相同的内存中开启更多的协程。


3. 由于协程的本质不是多线程而是单线程,所以不需要多线程的锁机制。因为只有一个线程,也不存在同时写变量而引起的冲突。在协程中控制共享资源不需要加锁,只需要判断状态即可。所以协程的执行效率比多线程高很多,同时也有效避免了多线程中的竞争关系。


协程的适用 & 不适用场景

适用场景:协程适用于被阻塞的,且需要大量并发的场景。


不适用场景:协程不适用于存在大量计算的场景(因为协程的本质是单线程来回切换),如果遇到这种情况,还是应该使用其他手段去解决。


初探异步 http 框架 httpx

至此我们对 "协程" 应该有了个大概的了解,但故事说到这里,相信有朋友还是满脸疑问:"协程" 对于接口测试有什么帮助呢?不要着急,答案就在下面。


相信用过 Python 做接口测试的朋友都对 requests 库不陌生。requests 中实现的 http 请求是同步请求,但其实基于 http 请求 IO 阻塞的特性,非常适合用协程来实现 "异步" http 请求从而提升测试效率。 


相信早就有人注意到了这点,于是在 Github 经过了一番探索后,果不其然,最终寻找到了支持协程 "异步" 调用 http 的开源库: httpx


什么是 httpx

httpx 是一个几乎继承了所有 requests 的特性并且支持 "异步" http 请求的开源库。简单来说,可以认为 httpx 是强化版 requests。


下面大家可以跟着我一起见识一下 httpx 的强大


安装

httpx 的安装非常简单,在 Python 3.6 以上的环境执行

pip install httpx


最佳实践

俗话说得好,效率决定成败。我分别使用了 httpx 异步 和 同步 的方式对批量 http 请求进行了耗时比较,来一起看看结果吧~


首先来看看同步 http 请求的耗时表现:

import asyncioimport httpximport threadingimport time
def sync_main(url, sign):    response = httpx.get(url).status_code    print(f'sync_main: {threading.current_thread()}{sign}2 + 1{response}')
sync_start = time.time()[sync_main(url='http://www.baidu.com', sign=i) for i in range(200)]sync_end = time.time()print(sync_end - sync_start)


代码比较简单,可以看到在 sync_main 中则实现了同步 http 访问百度 200 次。


运行后输出如下(截取了部分关键输出...):

sync_main: <_MainThread(MainThread, started 4471512512)>: 192: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 193: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 194: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 195: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 196: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 197: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 198: 200sync_main: <_MainThread(MainThread, started 4471512512)>: 199: 20016.56578803062439


可以看到在上面的输出中, 主线程没有进行切换(因为本来就是单线程啊喂!)请求按照顺序执行(因为是同步请求)。


程序运行共耗时 16.6 秒


下面我们试试 "异步" http 请求:

import asyncioimport httpximport threadingimport time
client = httpx.AsyncClient()
async def async_main(url, sign):    response = await client.get(url)    status_code = response.status_code print(f'async_main: {threading.current_thread()}: {sign}:{status_code}')

loop = asyncio.get_event_loop()tasks = [async_main(url='http://www.baidu.com', sign=i) for i in range(200)]async_start = time.time()loop.run_until_complete(asyncio.wait(tasks))async_end = time.time()loop.close()print(async_end - async_start)


上述代码在 async_main 中用 async await 关键字实现了"异步" http,通过 asyncio ( 异步 io 库请求百度首页 200 次并打印出了耗时。


运行代码后可以看到如下输出(截取了部分关键输出...)

async_main: <_MainThread(MainThread, started 4471512512)>: 56: 200async_main: <_MainThread(MainThread, started 4471512512)>: 99: 200async_main: <_MainThread(MainThread, started 4471512512)>: 67: 200async_main: <_MainThread(MainThread, started 4471512512)>: 93: 200async_main: <_MainThread(MainThread, started 4471512512)>: 125: 200async_main: <_MainThread(MainThread, started 4471512512)>: 193: 200async_main: <_MainThread(MainThread, started 4471512512)>: 100: 2004.518340110778809


可以看到顺序虽然是乱的(56,99,67...) (这是因为程序在协程间不停切换) 但是主线程并没有切换 (协程本质还是单线程 )。


程序共耗时 4.5 秒


比起同步请求耗时的 16.6 秒 缩短了接近 73 %!


俗话说得好,一步快,步步快。 在耗时方面,"异步" http 确实比同步 http 快了很多。当然,"协程" 不仅仅能在请求效率方面赋能接口测试, 掌握 "协程"后,相信小伙伴们的技术水平也能提升一个台阶,从而设计出更优秀的测试框架。

逆锋起笔是一个专注于程序员圈子的技术平台,你可以收获最新技术动态最新内测资格BAT等大厂的经验精品学习资料职业路线副业思维,微信搜索逆锋起笔关注!

一文带你了解爬虫
scrapy爬虫,学习资料分享
Python 暴力破解附近局域网 WiFi 密码
Python 爬虫,看这几本书就够了!
国内开发者开源爬虫工具箱爆红 GitHub

如果你觉得本文对你有所帮助,给我来个点赞、在看呀!

浏览 19
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报