Hudi 实践 | Apache Hudi 删除数据的多种姿势

共 4091字,需浏览 9分钟

 ·

2021-09-12 18:05

1. 删除数据的方式

  • 在要删除的记录中添加 ‘_HOODIE_IS_DELETED’ 且值为true的列

  • 使用分区级别的删除API

  • 使用记录级别删除的API

  • 使用deltastreamer,删除数据

2. 核心配置

hoodie.datasource.write.operation = "delete_partition"spark dataSoruce 如果使用分区级别的删除,需要设置此配置
hoodie.datasource.write.partitions.to.delete = "partitionValue_1,partitionValue_2,partitionValue_3"如果使用此配置,则只需要传递需要删除的分区即可,无需构建dataFrame.如果不使用此配置,必须要构建包含主键和分区的dataFrame.
spark dataSource 如果使用记录级别的删除,需要设置此配置hoodie.datasource.write.operation = delete

3. 案例

3.1 分区级别删除

分区级别删除包含两种方式,一种不依赖DataFrame数据,另外一种是依赖DataFrame数据。

3.1.1 不依赖DataFrame数据

不依赖DataFrame数据的删除方式只需要在常规配置下添加如下配置即可

  1. hoodie.datasource.write.operation = delete_partition

  2. hoodie.datasource.write.partitions.to.delete =  具体的分区值

val df = spark.emptyDataFramedf.write.format("org.apache.hudi"). option("hoodie.insert.shuffle.parallelism", "2"). option("hoodie.upsert.shuffle.parallelism", "2"). option("hoodie.bulkinsert.shuffle.parallelism", "2"). option("hoodie.delete.shuffle.parallelism", "2"). option("hoodie.table.name", "tableName"). option("hoodie.datasource.write.partitionpath.field", "partitionpath"). option("hoodie.datasource.write.operation", "delete_partition"). option("hoodie.datasource.write.partitions.to.delete", "partitionField_1, partitionField_2"). mode(Append). save(tablePath)


3.1.2 依赖DataFrame数据

依赖DataFrame数据的删除方式需要构建一个包含主键和分区的dataFrame,并且使用如下配置

hoodie.datasource.write.operation = delete_partition

//需要构建包含分区字段、主键的 dataFrameval df = spark.sql("select uuid, partitionpath from hudi_table")df.write.format("org.apache.hudi"). option("hoodie.insert.shuffle.parallelism", "2"). option("hoodie.upsert.shuffle.parallelism", "2"). option("hoodie.bulkinsert.shuffle.parallelism", "2"). option("hoodie.delete.shuffle.parallelism", "2"). option("hoodie.table.name", "tableName"). option("hoodie.datasource.write.recordkey.field", "uuid"). option("hoodie.datasource.write.partitionpath.field", "partitionpath"). option("hoodie.datasource.write.operation", "delete_partition"). mode(Append). save(tablePath)


3.2 记录级别删除

记录级删除也分为两种, 一种是将删除的数据集提前准备进行删除。另外一种是在数据中添加 ‘_HOODIE_IS_DELETED’  且值为true的列

3.2.1 依赖DataFrame数据

第一种记录级别删除与第二种分区级别删除配置大致相同. 需要构建一个包含主键和分区的dataFrame, 并且使用如下配置

hoodie.datasource.write.operation = delete

val df = spark.sql("select uuid, partitionpath from hudi_table")df.write.format("org.apache.hudi"). option("hoodie.insert.shuffle.parallelism", "2"). option("hoodie.upsert.shuffle.parallelism", "2"). option("hoodie.bulkinsert.shuffle.parallelism", "2"). option("hoodie.delete.shuffle.parallelism", "2"). option("hoodie.datasource.write.recordkey.field", "uuid"). option("hoodie.datasource.write.partitionpath.field", "partitionpath"). option("hoodie.table.name", "tableName"). option("hoodie.datasource.write.operation", "delete"). mode(Append). save(tablePath)

3.2.2 依赖schema方式

第二种记录级别删除需要在数据中添加 ‘_HOODIE_IS_DELETED’  且值为true的列

//需要在dataFram中添加此列,如果此值为false或者不存在则当作常规写入记录,如果此值为false则为删除记录StructField(_HOODIE_IS_DELETED, DataTypes.BooleanType, true, Metadata.empty());
dataFrame.write.format("org.apache.hudi"). option("hoodie.table.name", "test123"). option("hoodie.datasource.write.operation", "upsert"). option("hoodie.datasource.write.recordkey.field", "uuid"). option("hoodie.datasource.write.partitionpath.field", "partitionpath"). option("hoodie.datasource.write.storage.type", "COPY_ON_WRITE"). option("hoodie.datasource.write.precombine.field", "ts"). mode(Append). save(basePath)

3.2.3 deltastreamer方式

使用deltastreamer方式删除记录和3.2.2 中依赖schama删除方式其实类似

需要设置deltastreamer 中 schama文件包含 '_hoodie_is_deleted' 并且值为true


schema:

{"type":"record","name":"schema","fields":[{"name": "uuid","type": "String"}, {"name": "ts","type": "string"}, {"name": "partitionPath","type": "string"}, {"name" : "_hoodie_is_deleted","type" : "boolean","default" : false}]}

data:


{"ts": 0.0, "uuid": "69cdb048", "partitionpath": "americas/brazil/sao_paulo", "_hoodie_is_deleted" : true}
浏览 331
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报