5个必考的大厂SQL面试题
SQL几乎是每个数据岗的必备题目,下面分享几个常见的大厂SQL习题。
(1)找出连续7天登陆,连续30天登陆的用户(小红书笔试,电信云面试),最大连续登陆天数的问题 --窗口函数
(2)求连续点击三次的用户数,中间不能有别人的点击 ,最大连续天数的变形问题(腾讯微保面试)--窗口函数
(3)计算除去部门最高工资,和最低工资的平均工资(字节跳动面试)--窗口函数
(4)留存的计算,和累计求和的计算 --窗口函数,自联结(pdd面试)
(5)AB球队得分流水表,得到连续三次得分的队员名字 和每次赶超对手的球员名字,(pdd面试)
把这几类题型吃透,再也不怕手撕SQL和笔试了,其中最难的是题(5),整个面试的sql基本上都是窗口函数的玩法,搭配case when 也考得比较多。
(1) 找出连续7天登陆,连续30天登陆的用户
select *
from
(
select user_id ,count(1) as num
from
(select user_id,date_sub(log_in_date, rank) dts
f rom (select user_id,log_in_date,
row_number() over(partitioned by user_id order by log_in_date ) as rank
from user_log
)t
)a
group by dts
)b
where num = 7
(2)求连续点击三次的用户数,而且中间不能有别人的点击,
a表记录了点击的流水信息,包括用户id ,和点击时间
usr_id a a b a a a a
click_time t1 t2 t3 t4 t5 t6 t7
row_number() over(order by click_time) as rank_1
得到rank_1为 1 2 3 4 5 6 7
row_number() over(partition by usr_id order by click_time)
得到rank_2 为 1 2 1 3 4 5 6
rank_1- rank2
得到diff 为 0 0 2 1 1 1 1
这时我们发现只需要对diff进行分组计数大于3个,就是连续点击大于三且中间没有其他人点击的用户
select distinct usr_id
from
(
select *, rank_1- rank2 as diff
from
(
select *,
row_number() over(order by click_time) as rank_1
row_number() over(partition by usr_id order by click_time) as rank_2
from a
) b
) c
group by diff,usr_id
having count(diff) >=3
(3)计算除去部门最高工资,和最低工资的平均工资(字节跳动面试)--窗口函数
emp 表
id 员工 id ,deptno 部门编号,salary 工资
核心是使用窗口函数降序和升序分别排一遍就取出了最高和最低。
select a.deptno,avg(a.salary)
from
(
select *, rank() over( partition by deptno order by salary ) as rank_1
, rank() over( partition by deptno order by salary desc) as rank_2
from emp
) a
group by a.deptno
where a.rank_1 >1 and a.rank_2 >1
(4) 留存的计算,和累计求和的计算 --窗口函数,自联结(pdd面试)
手机中的相机是深受大家喜爱的应用之一,下图是某手机厂商数据库中的用户行为信息表中部分数据的截图
现在该手机厂商想要分析手机中的应用(相机)的活跃情况,需统计如下数据:
需要获得的数据的格式如下:
select d.a_t,count(distinct case when d.时间间隔=1 then d.用户id
else null
end) as 次日留存数,
count(distinct case when 时间间隔=1 then d.用户id
else null
end) /count(distinct d.用户id) as 次日留存率,
count(distinct case when d.时间间隔=3 then d.用户id
else null
end) as 3日留存数 ,
count(distinct case when 时间间隔=3 then d.用户id
else null
end) /count(distinct d.用户id) as 3日留存率,
count(distinct case when d.时间间隔=7 then d.用户id
else null
end) as 7日留存数 ,
count(distinct case when 时间间隔=7 then d.用户id
else null
end) /count(distinct d.用户id) as 7日留存率
from
(select *,timestampdiff(day,a_t,b_t) as 时间间隔
from (select a.`用户id`,a.登陆时间 as a_t ,b.登陆时间 as b_t
from 登录信息 as a
left join 登录信息 as b
on a.`用户id`=b.`用户id`
where a.应用名称= '相机' AND b.应用名称='相机') as c) as d
group by d.a_t;
(5)AB球队得分流水表,得到连续三次得分的队员名字 和每次赶超对手的球员名字(pdd)
在复盘时发现有类似原题,这是我在面试中遇到的最难的题
问题:两支篮球队进行了激烈的篮球比赛,比分交替上升。比赛结束后,你有一张两队得分分数的明细表,记录了球队team,球员号码number,球员姓名name, 得分分数score 以及得分时间scoretime(datetime)。现在球队要对比赛中表现突出的球员做出嘉奖,所以请你用sql统计出
1)连续三次(及以上)为球队得分的球员名单
2)比赛中帮助各自球队反超比分的球员姓名以及对应时间。
先建一个类似的表
CREATE TABLE basketball_game_score_detail(
team VARCHAR(40) NOT NULL ,
number VARCHAR(100) NOT NULL,
score_time datetime NOT NULL,
score int NOT NULL,
name varchar(100) NOT NULL
);
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:01:14',1,'A1');
insert into basketball_game_score_detail values('A',5,'2020/8/28 9:02:28',1,'A5');
insert into basketball_game_score_detail values('B',4,'2020/8/28 9:03:42',3,'B4');
insert into basketball_game_score_detail values('A',4,'2020/8/28 9:04:55',3,'A4');
insert into basketball_game_score_detail values('B',1,'2020/8/28 9:06:09',3,'B1');
insert into basketball_game_score_detail values('A',3,'2020/8/28 9:07:23',3,'A3');
insert into basketball_game_score_detail values('A',4,'2020/8/28 9:08:37',3,'A4');
insert into basketball_game_score_detail values('B',1,'2020/8/28 9:09:51',2,'B1');
insert into basketball_game_score_detail values('B',2,'2020/8/28 9:11:05',2,'B2');
insert into basketball_game_score_detail values('B',4,'2020/8/28 9:12:18',1,'B4');
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:13:32',2,'A1');
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:14:46',1,'A1');
insert into basketball_game_score_detail values('A',4,'2020/8/28 9:16:00',1,'A4');
insert into basketball_game_score_detail values('B',3,'2020/8/28 9:17:14',3,'B3');
insert into basketball_game_score_detail values('B',2,'2020/8/28 9:18:28',3,'B2');
insert into basketball_game_score_detail values('A',2,'2020/8/28 9:19:42',3,'A2');
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:20:55',1,'A1');
insert into basketball_game_score_detail values('B',3,'2020/8/28 9:22:09',2,'B3');
insert into basketball_game_score_detail values('B',3,'2020/8/28 9:23:23',3,'B3');
insert into basketball_game_score_detail values('A',5,'2020/8/28 9:24:37',2,'A5');
insert into basketball_game_score_detail values('B',1,'2020/8/28 9:25:51',3,'B1');
insert into basketball_game_score_detail values('B',2,'2020/8/28 9:27:05',1,'B2');
insert into basketball_game_score_detail values('A',3,'2020/8/28 9:28:18',1,'A3');
insert into basketball_game_score_detail values('B',4,'2020/8/28 9:29:32',1,'B4');
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:30:46',3,'A1');
insert into basketball_game_score_detail values('B',1,'2020/8/28 9:32:00',1,'B1');
insert into basketball_game_score_detail values('A',4,'2020/8/28 9:33:14',2,'A4');
insert into basketball_game_score_detail values('B',1,'2020/8/28 9:34:28',1,'B1');
insert into basketball_game_score_detail values('B',5,'2020/8/28 9:35:42',2,'B5');
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:36:55',1,'A1');
insert into basketball_game_score_detail values('B',1,'2020/8/28 9:38:09',3,'B1');
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:39:23',3,'A1');
insert into basketball_game_score_detail values('B',2,'2020/8/28 9:40:37',3,'B2');
insert into basketball_game_score_detail values('A',3,'2020/8/28 9:41:51',3,'A3');
insert into basketball_game_score_detail values('A',1,'2020/8/28 9:43:05',2,'A1');
insert into basketball_game_score_detail values('B',3,'2020/8/28 9:44:18',3,'B3');
insert into basketball_game_score_detail values('A',5,'2020/8/28 9:45:32',2,'A5');
insert into basketball_game_score_detail values('B',5,'2020/8/28 9:46:46',3,'B5');
这里我使用了lead和lag来取每个组的前几个值,这个和最大联系天数不太一样,但也可以用类似思路去解,但是使用lead和lag做起来更容易理解
select distinct a.name ,a.team from
(
select *,lead(name,1) over(partition by team order by score_time) as ld1
,lead(name,2) over(partition by team order by score_time) as ld2
,lag(name,1) over(partition by team order by score_time) as lg1
,lag(name,2) over(partition by team order by score_time) as lg2
from table
) a
where (a.name =a.ld1 and a.name =a.ld2)
or (a.name =a.ld1 and a.name =a.lg1)
or (a.name=a.lg1 and a.name=a.lg2)
第二小问面试时没完全做出来,说了下思路,现在想了想当时的思路还是有问题,而且这个题也并不难,核心还是记录每个时刻的累计得分表
SELECT TEAM,number,name,score_time,score,case when team='A' then score else 0 end as A_score
,case when team='B' then score else 0 end B_score
FROM basketball_game_score_detail
ORDER BY SCORE_time
如下得到每个时刻的累计得分表
select team,number,name,score_time,A_score,b_score
,sum(A_score)over(order by score_time) as a_sum_score2
,sum(b_score)over(order by score_time) as b_sum_score2
from
(
SELECT TEAM,number,name,score_time,score,case when team='A' then score else 0 end as A_score
,case when team='B' then score else 0 end B_score
FROM basketball_game_score_detail
ORDER BY SCORE_time
) as x
计算每个时刻的累计得分差,和上个时间的累计得分差,只要两个的符号相反就是反超时刻。感觉思路还是比较简洁的。
select *,score_gap*last_score_gap
from
(
select *,a_sum_score2-b_sum_score2 as score_gap
,lag(a_sum_score2-b_sum_score2,1)over(order by score_time) as last_score_gap
from
(
select team,number,name,score_time,A_score,b_score
,sum(A_score)over(order by score_time) as a_sum_score2
,sum(b_score)over(order by score_time) as b_sum_score2
from (
SELECT TEAM,number,name,score_time,score,case when team='A' then score else 0 end as A_score
,case when team='B' then score else 0 end B_score
FROM basketball_game_score_detail
ORDER BY SCORE_time
) as x
) as y
) as z
where z.score_gap*last_score_gap<=0
and a_sum_score2<>b_sum_score2
当然,不光会有SQL课程提供,我们还会有大厂数据大佬帮你答疑,包括技术、求职、面试,赶紧来吧!
文章来源知乎:绚丽的小海螺
这是我开发的机器人公众号小号,目前增加了天气查询,955公司名单,关注时间查询;后面还会增加图片功能和每日送书抽奖送书活动,以及调戏功能,欢迎来体验,捧场。
一个机器人公众号已经上线,欢迎调戏
推荐阅读:
入门: 最全的零基础学Python的问题 | 零基础学了8个月的Python | 实战项目 |学Python就是这条捷径
干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 | 从万众期待到口碑扑街!唐探3令人失望 | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影
趣味:弹球游戏 | 九宫格 | 漂亮的花 | 两百行Python《天天酷跑》游戏!
AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影
小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!| 再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|
年度爆款文案
点阅读原文,看B站我的视频!