接口请求合并的3种技巧,性能直接爆表!

共 13858字,需浏览 28分钟

 ·

2022-07-27 15:02

今日推荐

减少 try-catch ,这样做才叫优雅!

让人上瘾的新一代开发神器,彻底告别Controller、Service、Dao等方法

SpringBoot实现人脸识别功能

相信我,使用 Stream 真的可以让代码更优雅!

全网最详细的线程池 ThreadPoolExecutor 解读!

利用多线程批量拆分 List 导入数据库,效率杠杠的!

将相似或重复请求在上游系统中合并后发往下游系统,可以大大降低下游系统的负载,提升系统整体吞吐率。文章介绍了 hystrix collapserConcurrentHashMultiset、自实现BatchCollapser 三种请求合并技术,并通过其具体实现对比各自适用的场景。

前言

工作中,我们常见的请求模型都是”请求-应答”式,即一次请求中,服务给请求分配一个独立的线程,一块独立的内存空间,所有的操作都是独立的,包括资源和系统运算。我们也知道,在请求中处理一次系统 I/O 的消耗是非常大的,如果有非常多的请求都进行同一类 I/O 操作,那么是否可以将这些 I/O 操作都合并到一起,进行一次 I/O 操作,是否可以大大降低下游资源服务器的负担呢?

最近我工作之余的大部分时间都花在这个问题的探究上了,对比了几个现有类库,为了解决一个小问题把 hystrix javanica 的代码翻了一遍,也根据自己工作中遇到的业务需求实现了一个简单的合并类,收获还是挺大的。可能这个需求有点”偏门”,在网上搜索结果并不多,也没有综合一点的资料,索性自己总结分享一下,希望能帮到后来遇到这种问题的小伙伴。

Hystrix Collapser

hystrix

开源的请求合并类库(知名的)好像也只有 Netflix 公司开源的 Hystrix 了, hystrix 专注于保持 WEB 服务器在高并发环境下的系统稳定,我们常用它的熔断器(Circuit Breaker) 来实现服务的服务隔离和灾时降级,有了它,可以使整个系统不至于被某一个接口的高并发洪流冲塌,即使接口挂了也可以将服务降级,返回一个人性化的响应。请求合并作为一个保障下游服务稳定的利器,在 hystrix 内实现也并不意外。

我们在使用 hystrix 时,常用它的 javanica 模块,以注解的方式编写 hystrix 代码,使代码更简洁而且对业务代码侵入更低。所以在项目中我们一般至少需要引用 hystrix-corehystrix-javanica 两个包。

另外,hystrix 的实现都是通过 AOP,我们要还要在项目 xml 里显式配置 HystrixAspect 的 bean 来启用它。

<aop:aspectj-autoproxy/>  
<bean id="hystrixAspect" class="com.netflix.hystrix.contrib.javanica.aop.aspectj.HystrixCommandAspect" />  
collapser

hystrix collapser 是 hystrix 内的请求合并器,它有自定义 BatchMethod 和 注解两种实现方式,自定义 BatchMethod 网上有各种教程,实现起来很复杂,需要手写大量代码,而注解方式只需要添加两行注解即可,但配置方式我在官方文档上也没找见,中文方面本文应该是独一份儿了。

其实现需要注意的是:

  • 我们在需要合并的方法上添加 @HystrixCollapser 注解,在定义好的合并方法上添加 @HystrixCommand 注解;

  • single 方法只能传入一个参数,多参数情况下需要自己包装一个参数类,而 batch 方法需要 java.util.List<SingleParam>

  • single 方法返回 java.util.concurrent.Future<SingleReturn>, batch 方法返回 java.util.List<SingleReturn>,且要保证返回的结果数量和传入的参数数量一致。

下面是一个简单的示例:

public class HystrixCollapserSample {  
  
    @HystrixCollapser(batchMethod = "batch")  
    public Future<Boolean> single(String input) {  
        return null// single方法不会被执行到  
    }  
  
    public List<Boolean> batch(List<String> inputs) {  
        return inputs.stream().map(it -> Boolean.TRUE).collect(Collectors.toList());  
    }  
}  
源码实现

为了解决 hystrix collapser 的配置问题看了下 hystrix javanica 的源码,这里简单总结一下 hystrix 请求合并器的具体实现,源码的详细解析在我的笔记:Hystrix collasper 源码解析。

  • 在 spring-boot 内注册切面类的 bean,里面包含 @HystrixCollapser 注解切面;

  • 在方法执行时检测到方法被 HystrixCollapser 注解后,spring 调用 methodsAnnotatedWithHystrixCommand方法来执行 hystrix 代理;

  • hystrix 获取一个 collapser 实例(在当前 scope 内检测不到即创建);

  • hystrix 将当前请求的参数提交给 collapser, 由 collapser 存储在一个 concurrentHashMap (RequestArgumentType -> CollapsedRequest)内,此方法会创建一个 Observable 对象,并返回一个 观察此对象的 Future 给业务线程;

  • collpser 在创建时会创建一个 timer 线程,定时消费存储的请求,timer 会将多个请求构造成一个合并后的请求,调用 batch 执行后将结果顺序映射到输出参数,并通知 Future 任务已完成。

需要注意,由于需要等待 timer 执行真正的请求操作,collapser 会导致所有的请求的 cost 都会增加约 timerInterval/2 ms;

配置

hystrix collapser 的配置需要在 @HystrixCollapser 注解上使用,主要包括两个部分,专有配置和 hystrixCommand 通用配置;

专有配置包括:

  • collapserKey,这个可以不用配置,hystrix 会默认使用当前方法名;

  • batchMethod,配置 batch 方法名,我们一般会将 single 方法和 batch 方法定义在同一个类内,直接填方法名即可;

  • scope,最坑的配置项,也是逼我读源码的元凶,com.netflix.hystrix.HystrixCollapser.Scope 枚举类,有 REQUEST, GLOBAL 两种选项,在 scope 为 REQUEST 时,hystrix 会为每个请求都创建一个 collapser, 此时你会发现 batch 方法执行时,传入的请求数总为1。而且 REQUEST 项还是默认项,不明白这样请求合并还有什么意义;

  • collapserProperties, 在此选项内我们可以配置 hystrixCommand 的通用配置;

通用配置包括:

  • maxRequestsInBatch, 构造批量请求时,使用的单个请求的最大数量;

  • timerDelayInMilliseconds, 此选项配置 collapser 的 timer 线程多久会合并一次请求;

  • requestCache.enabled, 配置提交请求时是否缓存;

一个完整的配置如下:

@HystrixCollapser(  
            batchMethod = "batch",  
            collapserKey = "single",  
            scope = com.netflix.hystrix.HystrixCollapser.Scope.GLOBAL,  
            collapserProperties = {  
                    @HystrixProperty(name = "maxRequestsInBatch", value = "100"),  
                    @HystrixProperty(name = "timerDelayInMilliseconds", value = "1000"),  
                    @HystrixProperty(name = "requestCache.enabled", value = "true")  
            })  

BatchCollapser

设计

由于业务需求,我们并不太关心被合并请求的返回值,而且觉得 hystrix 保持那么多的 Future 并没有必要,于是自己实现了一个简单的请求合并器,业务线程简单地将请求放到一个容器里,请求数累积到一定量或延迟了一定的时间,就取出容器内的数据统一发送给下游系统。

设计思想跟 hystrix 类似,合并器有一个字段作为存储请求的容器,且设置一个 timer 线程定时消费容器内的请求,业务线程将请求参数提交到合并 器的容器内。不同之处在于,业务线程将请求提交给容器后立即同步返回成功,不必管请求的消费结果,这样便实现了时间维度上的合并触发。

另外,我还添加了另外一个维度的触发条件,每次将请求参数添加到容器后都会检验一下容器内请求的数量,如果数量达到一定的阈值,将在业务线程内合并执行一次。

由于有两个维度会触发合并,就不可避免会遇到线程安全问题。为了保证容器内的请求不会被多个线程重复消费或都漏掉,我需要一个容器能满足以下条件:

  • 是一种 Collection,类似于 ArrayList 或 Queue,可以存重复元素且有顺序;

  • 在多线程环境中能安全地将里面的数据全取出来进行消费,而不用自己实现锁。

java.util.concurrent 包内的 LinkedBlockingDeque 刚好符合要求,首先它实现了 BlockingDeque 接口,多线程环境下的存取操作是安全的;此外,它还提供 drainTo(Collection<? super E> c, int maxElements)方法,可以将容器内 maxElements 个元素安全地取出来,放到 Collection c 中。

实现

以下是具体的代码实现:

public class BatchCollapser<Eimplements InitializingBean {  
     private static final Logger logger = LoggerFactory.getLogger(BatchCollapser.class);  
     private static volatile Map<Class, BatchCollapser> instance = Maps.newConcurrentMap();  
     private static final ScheduledExecutorService SCHEDULE_EXECUTOR = Executors.newScheduledThreadPool(1);  
  
     private volatile LinkedBlockingDeque<E> batchContainer = new LinkedBlockingDeque<>();  
     private Handler<List<E>, Boolean> cleaner;  
     private long interval;  
     private int threshHold;  
  
     private BatchCollapser(Handler<List<E>, Boolean> cleaner, int threshHold, long interval) {  
         this.cleaner = cleaner;  
         this.threshHold = threshHold;  
         this.interval = interval;  
     }  
  
     @Override  
     public void afterPropertiesSet() throws Exception {  
         SCHEDULE_EXECUTOR.scheduleAtFixedRate(() -> {  
             try {  
                 this.clean();  
             } catch (Exception e) {  
                 logger.error("clean container exception", e);  
             }  
         }, 0, interval, TimeUnit.MILLISECONDS);  
     }  
  
     public void submit(E event) {  
         batchContainer.add(event);  
         if (batchContainer.size() >= threshHold) {  
             clean();  
         }  
     }  
  
     private void clean() {  
         List<E> transferList = Lists.newArrayListWithExpectedSize(threshHold);  
         batchContainer.drainTo(transferList, 100);  
         if (CollectionUtils.isEmpty(transferList)) {  
             return;  
         }  
  
         try {  
             cleaner.handle(transferList);  
         } catch (Exception e) {  
             logger.error("batch execute error, transferList:{}", transferList, e);  
         }  
     }  
  
     public static <E> BatchCollapser getInstance(Handler<List<E>, Boolean> cleaner, int threshHold, long interval) {  
         Class jobClass = cleaner.getClass();  
         if (instance.get(jobClass) == null) {  
             synchronized (BatchCollapser.class{  
                 if (instance.get(jobClass) == null) {  
                     instance.put(jobClass, new BatchCollapser<>(cleaner, threshHold, interval));  
                 }  
             }  
         }  
  
         return instance.get(jobClass);  
     }  
 }  

以下代码内需要注意的点:

  • 由于合并器的全局性需求,需要将合并器实现为一个单例,另外为了提升它的通用性,内部使用使用 concurrentHashMap 和 double check 实现了一个简单的单例工厂。

  • 为了区分不同用途的合并器,工厂需要传入一个实现了 Handler 的实例,通过实例的 class 来对请求进行分组存储。

  • 由于 java.util.Timer 的阻塞特性,一个 Timer 线程在阻塞时不会启动另一个同样的 Timer 线程,所以使用 ScheduledExecutorService 定时启动 Timer 线程。

ConcurrentHashMultiset

设计

上面介绍的请求合并都是将多个请求一次发送,下游服务器处理时本质上还是多个请求,最好的请求合并是在内存中进行,将请求结果简单合并成一个发送给下游服务器。如我们经常会遇到的需求:元素分值累加或数据统计,就可以先在内存中将某一项的分值或数据累加起来,定时请求数据库保存。

Guava 内就提供了这么一种数据结构:ConcurrentHashMultiset,它不同于普通的 set 结构存储相同元素时直接覆盖原有元素,而是给每个元素保持一个计数 count, 插入重复时元素的 count 值加1。而且它在添加和删除时并不加锁也能保证线程安全,具体实现是通过一个 while(true) 循环尝试操作,直到操作够所需要的数量。

ConcurrentHashMultiset 这种排重计数的特性,非常适合数据统计这种元素在短时间内重复率很高的场景,经过排重后的数量计算,可以大大降低下游服务器的压力,即使重复率不高,能用少量的内存空间换取系统可用性的提高,也是很划算的。

实现

使用 ConcurrentHashMultiset 进行请求合并与使用普通容器在整体结构上并无太大差异,具体类似于:

if (ConcurrentHashMultiset.isEmpty()) {  
    return;  
}  
  
List<Request> transferList = Lists.newArrayList();  
ConcurrentHashMultiset.elementSet().forEach(request -> {  
    int count = ConcurrentHashMultiset.count(request);  
    if (count <= 0) {  
        return;  
    }  
  
    transferList.add(count == 1 ? request : new Request(request.getIncrement() * count));  
    ConcurrentHashMultiset.remove(request, count);  
});  

小结

最后总结一下各个技术适用的场景:

  • hystrix collapser: 需要每个请求的结果,并且不在意每个请求的 cost 会增加;

  • BatchCollapser: 不在意请求的结果,需要请求合并能在时间和数量两个维度上触发;

  • ConcurrentHashMultiset:请求重复率很高的统计类场景;

另外,如果选择自己来实现的话,完全可以将 BatchCollapser 和 ConcurrentHashMultiset 结合一下,在BatchCollapser 里使用 ConcurrentHashMultiset 作为容器,这样就可以结合两者的优势了

来源:https://zhenbianshu.github.io/


最后,给大家推荐一个我的知识星球,现在加入,前 100 名,只需要 25 元即可,非常优惠。
浏览 19
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报