多线程场景下使用 ArrayList,这几点一定要注意!

架构真经

共 5133字,需浏览 11分钟

 · 2021-02-26

ArrayList 不是线程安全的,这点很多人都知道,但是线程不安全的原因及表现,怎么在多线程情况下使用ArrayList,可能不是很清楚,这里总结一下。


1. 源码分析


查看 ArrayList 的 add 操作源码如下:



/**     * Appends the specified element to the end of this list.     *     * @param e element to be appended to this list     * @return true (as specified by {@link Collection#add})     */    public boolean add(E e) {      // 判断列表的capacity容量是否足够,是否需要扩容        ensureCapacityInternal(size + 1);  // Increments modCount!!        // 将元素添加进列表的元素数组里面      elementData[size++] = e;        return true;    }


源码中涉及的几个元素及方法定义如下:



     /**     * Default initial capacity.     */    private static final int DEFAULT_CAPACITY = 10;


    /**    * 列表元素集合数组     * 如果新建ArrayList对象时没有指定大小,那么会将EMPTY_ELEMENTDATA赋值给elementData,     * 并在第一次添加元素时,将列表容量设置为DEFAULT_CAPACITY    */    transient Object[] elementData;


   /**   *列表大小,elementData中存储的元素个数   */    private int size;


  private void ensureCapacityInternal(int minCapacity) {        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);        }


       ensureExplicitCapacity(minCapacity);    }


   private void ensureExplicitCapacity(int minCapacity) {        modCount++;


       // overflow-conscious code        if (minCapacity - elementData.length > 0)            grow(minCapacity);    }


   private void grow(int minCapacity) {        // overflow-conscious code        int oldCapacity = elementData.length;        int newCapacity = oldCapacity + (oldCapacity >> 1);        if (newCapacity - minCapacity < 0)            newCapacity = minCapacity;        if (newCapacity - MAX_ARRAY_SIZE > 0)            newCapacity = hugeCapacity(minCapacity);        // minCapacity is usually close to size, so this is a win:        elementData = Arrays.copyOf(elementData, newCapacity);    }



通过源码可以看出:ArrayList的实现主要就是用了一个Object的数组,用来保存所有的元素,以及一个size变量用来保存当前数组中已经添加了多少元素。


执行add方法时,主要分为两步:


  • 首先判断elementData数组容量是否满足需求——》判断如果将当前的新元素加到列表后面,列表的elementData数组的大小是否满足,如果size + 1的这个需求长度大于了elementData这个数组的长度,那么就要对这个数组进行扩容; 

  • 之后在elementData对应位置上设置元素的值。


2. 线程不安全的两种体现


2.1 数组越界异常 ArrayIndexOutOfBoundsException


由于ArrayList添加元素是如上面分两步进行,可以看出第一个不安全的隐患,在多个线程进行add操作时可能会导致elementData数组越界。


具体逻辑如下:


  1. 列表大小为9,即size=9

  2. 线程A开始进入add方法,这时它获取到size的值为9,调用ensureCapacityInternal方法进行容量判断。

  3. 线程B此时也进入add方法,它获取到size的值也为9,也开始调用ensureCapacityInternal方法。

  4. 线程A发现需求大小为10,而elementData的大小就为10,可以容纳。于是它不再扩容,返回。

  5. 线程B也发现需求大小为10,也可以容纳,返回。

  6. 线程A开始进行设置值操作, elementData[size++] = e 操作。此时size变为10。

  7. 线程B也开始进行设置值操作,它尝试设置elementData[10] = e,而elementData没有进行过扩容,它的下标最大为9。于是此时会报出一个数组越界的异常ArrayIndexOutOfBoundsException.


2.2 元素值覆盖和为空问题


elementData[size++] = e 设置值的操作同样会导致线程不安全。


从这儿可以看出,这步操作也不是一个原子操作,它由如下两步操作构成:



elementData[size] = e;size = size + 1;


在单线程执行这两条代码时没有任何问题,但是当多线程环境下执行时,可能就会发生一个线程的值覆盖另一个线程添加的值,具体逻辑如下:


  1. 列表大小为0,即size=0

  2. 线程A开始添加一个元素,值为A。此时它执行第一条操作,将A放在了elementData下标为0的位置上。

  3. 接着线程B刚好也要开始添加一个值为B的元素,且走到了第一步操作。此时线程B获取到size的值依然为0,于是它将B也放在了elementData下标为0的位置上。

  4. 线程A开始将size的值增加为1

  5. 线程B开始将size的值增加为2


这样线程AB执行完毕后,理想中情况为size为2,elementData下标0的位置为A,下标1的位置为B。


而实际情况变成了size为2,elementData下标为0的位置变成了B,下标1的位置上什么都没有。


并且后续除非使用set方法修改此位置的值,否则将一直为null,因为size为2,添加元素时会从下标为2的位置上开始。


3. 代码示例


如下,通过两个线程对ArrayList添加元素,复现上面的两种不安全情况。



import java.util.ArrayList;import java.util.List;


public class ArrayListSafeTest {


   public static void main(String[] args) throws InterruptedException {


       final Listlist = new ArrayList();        // 线程A将1-1000添加到列表        new Thread(new Runnable() {


           @Override            public void run() {                for (int i = 1; i < 1000; i++) {                    list.add(i);


                   try {                        Thread.sleep(1);                    } catch (InterruptedException e) {                        e.printStackTrace();                    }                }


           }


       }).start();        // 线程B将1001-2000添加到列表        new Thread(new Runnable() {


           @Override            public void run() {                for (int i = 1001; i < 2000; i++) {                    list.add(i);


                   try {                        Thread.sleep(1);                    } catch (InterruptedException e) {                        e.printStackTrace();                    }                }


           }


       }).start();        Thread.sleep(1000);


       // 打印所有结果        for (int i = 0; i < list.size(); i++) {            System.out.println("第" + (i + 1) + "个元素为:" + list.get(i));        }    }}


执行过程中,两种情况出现如下:



4. ArrayList线程安全处理


4.1 Collections.synchronizedList


最常用的方法是通过 Collections 的 synchronizedList 方法将ArrayList 转换成线程安全的容器后再使用。



List<Object> list =Collections.synchronizedList(new ArrayList<Object>);


4.2 为list.add()方法加锁



synchronized(list.get()) {list.get().add(model);}


4.3 CopyOnWriteArrayList


使用线程安全的 CopyOnWriteArrayList 代替线程不安全的 ArrayList。



List<Object> list1 = new CopyOnWriteArrayList<Object>();


4.4 使用ThreadLocal


使用ThreadLocal变量确保线程封闭性(封闭线程往往是比较安全的, 但由于使用ThreadLocal封装变量,相当于把变量丢进执行线程中去,每new一个新的线程,变量也会new一次,一定程度上会造成性能[内存]损耗,但其执行完毕就销毁的机制使得ThreadLocal变成比较优化的并发解决方案)。



ThreadLocalObject>> threadList = new ThreadLocalObject>>() {    @Override    protected List<Object> initialValue() {          return new ArrayList<Object>();    }};
浏览 10
点赞
评论
收藏
分享

手机扫一扫分享

举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

举报