重磅开源!FAIR发布自监督训练库VISSL!
点蓝色字关注“机器学习算法工程师”
设为星标,干货直达!
目前在CV领域最火的除了transformer的应用外,就属于自监督学习了(Self-Supervised Learning),日前Facebook AI开源了基于PyTorch的自监督学习库VISSL,目前该库实现了自监督学习的SOTA,并且给出了详细的使用教程
https://github.com/facebookresearch/vissl
VISSL助力推动CV领域自监督学习的发展,FAIR官方出品,特点突出:
Reproducible implementation of SOTA in Self-Supervision: All existing SOTA in Self-Supervision are implemented - SwAV, SimCLR, MoCo(v2), PIRL, NPID, NPID++, DeepClusterV2, ClusterFit, RotNet, Jigsaw. Also supports supervised trainings.
Benchmark suite: Variety of benchmarks tasks including linear image classification (places205, imagenet1k, voc07), full finetuning, semi-supervised benchmark, nearest neighbor benchmark, object detection (Pascal VOC and COCO).
Ease of Usability: easy to use using yaml configuration system based on Hydra.
Modular: Easy to design new tasks and reuse the existing components from other tasks (objective functions, model trunk and heads, data transforms, etc.). The modular components are simple drop-in replacements in yaml config files.
Scalability: Easy to train model on 1-gpu, multi-gpu and multi-node. Several components for large scale trainings provided as simple config file plugs: Activation checkpointing, ZeRO, FP16, LARC, Stateful data sampler, data class to handle invalid images, large model backbones like RegNets, etc.
Model Zoo: Over 60 pre-trained self-supervised model weights.
具体的Model Zoo见这里(真的是超级详细):
https://github.com/facebookresearch/vissl/blob/master/MODEL_ZOO.md
另外,VISLL还给出了详细的文档以及教程:
Get started with VISSL by trying one of the Colab tutorial notebooks.
Train SimCLR on 1-gpu
Extracting Features from a pretrained model
Benchmark task: Full finetuning on ImageNet-1K
Benchmark task: Linear image classification on ImageNet-1K
Large scale training (fp16, LARC, ZeRO)
其实除了VISSL外,商汤较早前也在mmcv家族中开源了自监督训练库OpenSelfUp:
https://github.com/open-mmlab/OpenSelfSup
目前也实现了很多的自监督学习模型:
OpenSelfUp和VISLL到底哪个更好用,还需要上手测试,但是背后两者肯定都和自家的目标检测库相关联,即mmdetection和detectron2。不管怎样,期待这个领域有更大的发展!
推荐阅读
涨点神器FixRes:两次超越ImageNet数据集上的SOTA
CondInst:性能和速度均超越Mask RCNN的实例分割模型
mmdetection最小复刻版(十一):概率Anchor分配机制PAA深入分析
MMDetection新版本V2.7发布,支持DETR,还有YOLOV4在路上!
无需tricks,知识蒸馏提升ResNet50在ImageNet上准确度至80%+
不妨试试MoCo,来替换ImageNet上pretrain模型!
mmdetection最小复刻版(七):anchor-base和anchor-free差异分析
mmdetection最小复刻版(四):独家yolo转化内幕
机器学习算法工程师
一个用心的公众号